1 INTRODUCTION

Figure 1-1. A multilevel machine.

Figure 1-2. A six-level computer. The support method for each level is supported is indicated below it (along with the name of the supporting program).

Figure 1-3. A sample job for the FMS operating system.

Year	Name	Made by	Comments	
1834	Analytical Engine	Babbage	First attempt to build a digital computer	
1936	Z1	Zuse	First working relay calculating machine	
1943	COLOSSUS	British gov't	First electronic computer	
1944	Mark I	Aiken	First American general-purpose computer	
1946	ENIAC I	Eckert/Mauchley	Modern computer history starts here	
1949	EDSAC	Wilkes	First stored-program computer	
1951	Whirlwind I	M.I.T.	First real-time computer	
1952	IAS	Von Neumann	Most current machines use this design	
1960	PDP-1	DEC	First minicomputer (50 sold)	
1961	1401	IBM	Enormously popular small business machine	
1962	7094	IBM	Dominated scientific computing in the early 1960s	
1963	B5000	Burroughs	First machine designed for a high-level language	
1964	360	IBM	First product line designed as a family	
1964	6600	CDC	First scientific supercomputer	
1965	PDP-8	DEC	First mass-market minicomputer (50,000 sold)	
1970	PDP-11	DEC	Dominated minicomputers in the 1970s	
1974	8080	Intel	First general-purpose 8-bit computer on a chip	
1974	CRAY-1	Cray	First vector supercomputer	
1978	VAX	DEC	First 32-bit superminicomputer	
1981	IBM PC	IBM	Started the modern personal computer era	
1985	MIPS	MIPS	First commercial RISC machine	
1987	SPARC	Sun	First SPARC-based RISC workstation	
1990	RS6000	IBM	First superscalar machine	

Figure 1-4. Some milestones in the development of the modern digital computer.

Figure 1-5. The original von Neumann machine.

Figure 1-6. The PDP-8 omnibus.

Property	Model 30	Model 40	Model 50	Model 65
Relative performance	1	3.5	10	21
Cycle time (nsec)	1000	625	500	250
Maximum memory (KB)	64	256	256	512
Bytes fetched per cycle	1	2	4	16
Maximum number of data channels	3	3	4	6

Figure 1-7. The initial offering of the IBM 360 product line.

Figure 1-8. Moore's law predicts a 60 percent annual increase in the number of transistors that can be put on a chip. The data points given in this figure are memory sizes, in bits.

Туре	Price (\$)	Example application	
Disposable computer	1	Greeting cards	
Embedded computer	10	Watches, cars, appliances	
Game computer	100	Home video games	
Personal computer	1K	Desktop or portable computer	
Server	10K	Network server	
Collection of Workstations	100K	Departmental minisupercomputer	
Mainframe	1M	Batch data processing in a bank	
Supercomputer	10M	Long range weather prediction	

Figure 1-9. The current spectrum of computers available. The prices should be taken with a grain (or better yet, a metric ton) of salt.

Chip	Date	MHz	Transistors	Memory	Notes
4004	4/1971	0.108	2,300	640	First microprocessor on a chip
8008	4/1972	0.108	3,500	16 KB	First 8-bit microprocessor
8080	4/1974	2	6,000	64 KB	First general-purpose CPU on a chip
8086	6/1978	5-10	29,000	1 MB	First 16-bit CPU on a chip
8088	6/1979	5-8	29,000	1 MB	Used in IBM PC
80286	2/1982	8-12	134,000	16 MB	Memory protection present
80386	10/1985	16-33	275,000	4 GB	First 32-bit CPU
80486	4/1989	25-100	1.2M	4 GB	Built-in 8K cache memory
Pentium	3/1993	60-233	3.1M	4 GB	Two pipelines; later models had MMX
Pentium Pro	3/1995	150-200	5.5M	4 GB	Two levels of cache built in
Pentium II	5/1997	233-400	7.5M	4 GB	Pentium Pro plus MMX

Figure 1-10. The Intel CPU family. Clock speeds are measured in MHz (megahertz) where 1 MHz is 1 million cycles/sec.

Figure 1-11. Moore's law for CPU chips.