
 Prof Bill’s Dry Technical Notes

DTN #3 – Java Coding Guidelines
Bare bones Java coding guidelines
Updated: Jan 2008

I Stole This
I have stolen most of this from the creators of Java, Sun Microsystems. These
guidelines are a tiny subset of Sun’s. See?

java.sun.com/docs/codeconv

Rationale
Why am I bothering with this? Coding guidelines have a number of benefits:

• Improves your efficiency with a consistent and disciplined approach
• Easier to share your code with others
• Better to understand your “old” code in the future
• You will have guidelines in the “real world”... few people code in a vacuum

Number One
You can easily prevent the number one mistake of new coders:

Think, then code.
- Koffman & Wolfgang “Data Structures and Design Using Java”

Take a couple of minutes to sketch out what you want to do before you sit down
to do it. If you can’t do it on paper, then you won’t be able to do it on your
computer. You can dramatically improve your efficiency and lower your
frustration level, thinking before coding.

Give it a try!

Just Ten
Just ten of these… not set in stone, but only break them with good reason:

1. Use .java suffix for Java files. Rationale: many java tools expect this.

2. One public class or interface per file. Rationale: Java convention.

3. Use Javadoc style comments for each class, and all variables and methods
defined in your class. Rationale: Explain the public parts of your class.
Javadoc is a standard. You can then generate web pages documenting your
API, just like Sun does for Java. Use at least the following tags: @author for
classes, @param, @return for methods. See java.sun.com/j2se/javadoc

http://java.sun.com/docs/codeconv/
http://java.sun.com/j2se/javadoc/

 Prof Bill’s Dry Technical Notes

4. Make class variables private or protected. Rationale: This is a common
object-oriented paradigm. Access to class variables is often provided by
accessor (set) and mutator (get) methods.

5. Use camel notation for methods and variables. Rationale: Java convention.
Camel notation starts with lower case and begins new words with upper case,
for example: professorPayRaise.

6. Capitalize class, interface and package names. Rationale: Java convention.
Example: MonsterTruck.

7. Use UPPER CASE for constants, separating words with an underscore.
Rationale: Java convention. Example: MAX_HEAD_ROOM.

8. Use consistent style for braces and indentation. Rationale: It makes your
code more readable. The NetBeans default is fine.

9. Use curly braces for all if-then statements or loops. Rationale: Prevent difficult
bugs by surrounding blocks even if they only include a single statement.

10. Use inline comments to explain difficult sections of your code. Rationale: This
makes your code easier to understand. Assume that your reader understands
Java and CS… don’t explain Java in your comments. Comments should
appear before the code they explain.

Some practical tips for you:

• Use good descriptive names for everything: files, classes, methods,
variables, etc. If you abbreviate, be consistent throughout.

• Learn the Java tools available to you: the debugger in NetBeans, Javadoc,
JUnit (for testing). Ask your instructor or a buddy about them.

• I generally leave a file in my project folder called README.txt for
comments and status.

Organized, well-designed code is more efficient to create, easier to understand,
and beautiful!

thanks… yow, bill

	DTN #3 – Java Coding Guidelines
	I Stole This
	Rationale
	Number One
	Just Ten

