
Chapter 12 - Password Reset
● 12.1

○ General sequence for password reset:
■ When a user requests a password reset, find the user by the submitted

email address.
■ If the email address exists in the database, generate a reset token and

corresponding reset digest.
■ Save the reset digest to the database, and then send an email to the user

with a link containing the reset token and user’s email address.
■ When the user clicks the link, find the user by email address, and then

authenticate the token by comparing it to the reset digest.
■ If authenticated, present the user with the form for changing the

password.
○ Generate a controller for the Password Reset Resource - make both a ​new ​and

edit ​action
■ $ rails generate controller PasswordResets new edit --no-test-framework
■ Note the flag for skipping the test generation

○ Add the resources for new, create, edit, and update to the config/routes.rb:
■ resources :password_resets, only: [:new, :create, :edit, :update]

○ Now add a link on the new.html.erb view for the forgot password action
■ <%= link_to "(forgot password)", new_password_reset_path %>

○ Now we need to add two attributes to the Users model:
■ Reset_digest : for storing a password reset digest
■ Reset_sent_at : for expiring the reset request
■ Do this with the following migrate command:

● $ rails generate migration add_reset_to_users reset_digest:string \
reset_sent_at:datetime

● Then regular rails db:migrate
○ Now we build the Forgot password page;

app/views/password_resets/new.html.erb
■ See tutorial for html that's added at this step (12.1.2)

○ When a user submits this new page we must find the user by email, and update
the password reset token and sent-at timestamp. Then we redirect to the root
URL.

■ Some of this work will be handled in the
app/controllers/password_resets_controller.rb

● Code will be added to the create method. See tutorial for code (fig
12.5)

■ Additional code must be added to the ​app/model/user.rb
● attr_accessor :remember_token, :activation_token, ​:reset_token

● Also add the ​create_reset_digest​ &
send_password_reset_email​ methods (see tutorial for code)

● 12.2
○ Using the existing ​app/mailers/user_mailer.rb​ that we generated in chapter 11

we need to update the password_rest method that was already defined:
■ def password_reset(user)

 @user = user
 mail to: user.email, subject: "Password reset"
End

■ We also need to update the two associated email templates (html and
text). See tutorial listing 12.8 & 12.9 for details

■ We can add details to our test/mailers/previews/user_mailer_preview.rb
file to preview our reset emails. This is nearly identical to how we did it in
chapter 11

○ Now we can set up a test for the password reset by adding the code listed in
Listing 12.12. This is added to the test/mailers/user_mailer_test.rb

● 12.3
○ Now we need to create the password reset page/form

■ The first step to resetting the password is to add a hidden field to the
app/views/password_resets/edit.html.erb for holding the user's email. This
is because we need it to be available for the update action when the form
is submitted

● <%= hidden_field_tag :email, @user.email %>
○ To get this form to render we need do a bunch of​ before_action​ stuff to validate

the user. We add the following code to the
controllers/password_resets_controller.rb:

■ before_action :get_user, only: [:edit, :update]
before_action :valid_user, only: [:edit, :update]

■ Then define the get_user and valid_user methods. See Listing 12.15 for
details

○ Now that we can submit the reset we need to validate the reset
■ To check that the reset has not expired add another before_action check

to the password_resets_controller.rb:
● before_action :check_expiration, only: [:edit, :update] # Case (1)
● Also add the associated check_expication method. See Listing

12.16 for details
■ To check that the password is valid, is not empty, and to handle

successful submission of the update add the given code in Listing 12.16
to the ​update​ method

■ Now we add the password_reset_expired? Method to the models/user.rb
● # Returns true if a password reset has expired.

 def password_reset_expired?

 reset_sent_at < 2.hours.ago
 end

○ We can now test valid and invalid submissions. Start by generating integration
tests for the password reset:

■ $ rails generate integration_test password_resets
■ Next ass ALL the code he supplied for the

test/integration/password_resets.test.rb. See Listing 12.18 (it is a lot of
code)

● 12.4
○ Like chapter 11 we’ll use SendGrid on Heroku for this email service. If you

already did this in chapter 11 then there's nothing left to do but the normal wrap
up procedure

