
Chapter 6: Modeling Users
Making User Models
$ rails generate model User name:string email:string

Model entries each have unique integer IDs in addition to specified attributes.

That command generates a migration file (app/db/migrate/[timestamp]_modelname.rb) that
details what will be done to change the database when an update, or migration, happens.

$ rails db:migrate

On first migrate, it creates the database in the db directory with a .sqlite3 extension.
 http://sqlitebrowser.org/ - a program to open and view the contents

To mess around with the database from the command line, this command will open a dev
console that rolls back changes when exited: $ rails console --sandbox

Here’s an example of some of the things you can do:

 foo = User.create(name: "Foo", email: "foo@bar.com") to establish an object variable
 foo.save to put it in the database
 foo.destroy to destroy the object and remove it from the database
 foo.email = "mhartl@example.net" to set a specific attribute (email)
 foo.save to apply
 foo.update_attributes(name: "The Dude", email: "dude@abides.org") also works
 foo.reload.email to reset a attribute (email) to what it was if it hasn’t been saved yet

 User.find(1) gets the entry with id 1
 User.find_by(email: "mhartl@example.com") checks a specific field
 User.first gets the first user
 User.all (effectively) returns an array of all users

mailto:mhartl@example.com
mailto:mhartl@example.net
mailto:foo@bar.com

User Validation
You probably don’t want people to be able to put blank names and emails, so in order to start
setting up for validating those fields, the tutorial recommends setting up tests. Like most other
aspects of the application, models have their own directory for tests in the test directory.

The approach used in the tutorial:
 def setup
 @user = User.new(name: "Example User", email: "user@example.com")
 end

 test "should be valid" do
 assert @user.valid?
 end

 test "name should be present" do
 @user.name = " "
 assert_not @user.valid? #note the _not
 end

The third block isn’t valid until there is a use of validates in the app/models/user.rb file of the
model:

validates :name, presence: true, length: { maximum: 50 }

Other useful things for the model file:

format: { with: /<regular expression>/ } to test for a certain format, like an email format
 http://www.rubular.com/ good for testing regular expressions! It also has information on

how to construct them.

Asserts can have custom messages. For example,
assert_not @user.valid?, "#{invalid_address.inspect} should be invalid"

The model's .rb file can also contain a "before_save {}" block, which will execute some
code on the model before saving any new entry:
before_save { self.email = email.downcase }

It’s necessary to use that syntax! You can’t just do email = email.downcase, because the
self. is optional on the right side, but not on the left.

uniqueness: true will make sure there isn’t a duplicate entry with the same information.

 uniqueness: { case_sensitive: false } if case sensitivity doesn't matter, does same thing

An important caveat with uniqueness: true is that it does not guarantee database uniqueness!!
This is a big problem, because if this is part of a form and a user hits submit more than once, it
can send a bunch of requests at the same time and create duplicates.

Thankfully, it’s not hard to add some rudimentary database-side validation to prevent that from
happening. In the case of our tutorial app, you can do this by generating a migration and
manually editing the migration file to add a uniqueness check to a certain column.
($ rails generate migration add_index_to_users_email used in book)

The contents that the tutorial has us add to the migration file (before migrating, obviously):

class AddIndexToUsersEmail < ActiveRecord::Migration[5.0]
 def change
 add_index :users, :email, unique: true
 end
end

In order to make this not throw an error, you’ll need to change a fixtures file
(test/fixtures/(users).yml) which has some lines that will create identical test entries in the
database. The tutorial has us delete everything in it, so it probably isn’t valuable until way later.

Adding a Password
Having a secure password for your users is as easy as putting "has_secure_password" in the
the user model. It's a method that adds the following functionality:

● The ability to save a securely hashed password_digest attribute to the database, so it
isn’t stored in plaintext

● A pair of virtual attributes (password and password_confirmation), including presence
validations upon object creation and a validation requiring that they match

● An authenticate method that redirects the user to a page of your choice when the
password is correct (and false otherwise)

The only requirement for has_secure_password to work its magic is for the corresponding
model to have an attribute called “password_digest”.

To add it to our users in the sample app, we used

$ rails generate migration add_password_digest_to_users password_digest:string
Which generated a migration file with everything that we needed.

Also, put gem 'bcrypt' in your gemfile so that the has_secure_password method can use a
decent hashing method.

Once everything is in place and you’ve updated pre-password-adding-migration users to have
passwords and password confirmations, you can use the method authenticate to give a
password and check if it’s right. For example, if you were in the console and had a user set to a
user variable, you could do the following:

>> user.authenticate("not_the_right_password")
false
>> user.authenticate("foobaz")
false
>> user.authenticate("foobar")
=> #<User id: 1, name: "Michael Hartl", email: "mhartl@example.com",
created_at: "2016-05-23 20:36:46", updated_at: "2016-05-23 20:36:46",
password_digest:
"$2a$10$xxucoRlMp06RLJSfWpZ8hO8Dt9AZXlGRi3usP3njQg3...">

As you can see, putting in the correct password will return the user object itself.

