Lab09 - implements List<T>
Due: Wed Jun 4, 2014

Let’s implement our own generic doubly-linked list. Implement List<T>. Then, you'll use your
own list in Program #4.

This lab focuses on:
1 Chapter 20 Linked Lists

First step - Copy the files from my common area/lab09 folder on the k: drive.
It may be handy to have the Javadoc for List<T> handy to answer specific questions about how
the interface works.

docs.oracle.com/javase/7/docs/api/java/util/List.html

Part 1 - Implementing the interface
Create your list. Mine is:

public class ProfBillList<T> implements List<T> { .. }
When you do this, NetBeans will complain (a lot) about abstract methods in L.ist<T> that are
not implemented. Let’s fix this. NetBeans knows how to create stubs for all your the List<T>
methods that you're missing:
e Click on the light bulb by your class declaration
e Click on “Implement all abstract methods”

This should make NetBeans very happy and signaling green for your list class.

Copy my Lab09 class into your project space. I've got amain () and lots of test methods there.

Part 2 - Ctor, Node

Add a private Node<T> class to your list with element, next and prev class variables
(because we are doubly-linked). This is a rare case where you can make your class variables
public. Add a ctor for Node.

Add your ctor for your list. Let’'s maintain head and tail Nodes of your list to null.

Lab 09 1 May 2014

http://www.google.com/url?q=http%3A%2F%2Fdocs.oracle.com%2Fjavase%2F7%2Fdocs%2Fapi%2Fjava%2Futil%2FList.html&sa=D&sntz=1&usg=AFQjCNHxhZynPFt_xi7XJFDDmrEafn6EZA

Part 3 - Add, get, toString
Let's do the add () and get () methods first. We’ll work these out on the board. Let’s also do
toString() so we can start printing out lists. Test them in your main ().

Part 4 - Clear, size, isEmpty

Take a break. Rest your brain. Do the 3 easiest methods of all: clear (), size (), and
isEmpty ().

Test these new guys in your main ().

Part5 - Remove, add
These are a bit harder: remove (Object o), add(int index, T element),

remove (int index)
We’ll do some on the board and then code them up.

Part 6 - Listlterator<T> and foreach

Implement: iterator (), listIterator ()
With these methods, for-each loops will work for your list. Excellent!

To do this, you’ll need to add your own iterator class. This is challenging. So,let’s get going!
It should be private in your list class. Mine is:
private class ProfBillIterator<T> implements ListIterator<T> { .. }

This is a good description of how your Listlterator should work:

docs.oracle.com/javase/7/docs/api/java/util/Listlterator.html

Part 7 - Etc

Keep going:
e toArray() and toArray (T[] a) (Why is an array passed in to the 2nd method?)
® set(int index, T element)
® indexOf (Object o) and lastIndexOf (Object o)

And so on...
Part 8 - use your list in Program #4. Good luck!

Lab 09 2 May 2014

http://www.google.com/url?q=http%3A%2F%2Fdocs.oracle.com%2Fjavase%2F7%2Fdocs%2Fapi%2Fjava%2Futil%2FListIterator.html&sa=D&sntz=1&usg=AFQjCNEATvmmVEQ_mxou3l6C-flpOXulgQ

