
Note 10 Apr 2014

Ch 16.3 Algorithm analysis 

Estimate the efficiency of an algorithm. Usually measuring time and space.

There’s a BIG difference between measuring performance for algorithms vs. programs.
❖ Algorithms - theoretical calculation, estimates, performance in the limit, average vs. 

worst case analysis, no accounting for implementation factors
❖ Programs - measuring actual runtimes, language specific, implementation specific, 

includes many “reality” factors

Definitions
Basic step/operation - an algorithm step that is simple and executes in constant time

Complexity analysis - estimate of the basic steps in an algorithm to process a problem of size 
N; common to have two kinds of complexity analysis: worst-case and average-case

Asymptotic complexity - complexity analysis as problem size (N) gets large; this represents 
the general case

Big O notation
● Describes algorithm complexity at the limit as N approaches infinity
● Strip out constants and other terms overwhelmed as N gets large; example: 5n2 + 10n + 

7 is O(n2)
● Binary search is O(log n); this is pronounced “Big Oh of log N” 
● “a computational problem is said to be in O(g(n)) if there exists an algorithm for the 

problem whose worst case complexity function is in O(g(n))”... page 995

This table is an expansion on the list on page 995 in our text:

Name Big-O Description/Example

constant time O(1) Run time is essentially independent of problem size
Example: hash table lookup

logarithmic time O(log n) Run time increases slowly as problem size increases
Example: Binary search

linear time O(n) Run time increases directly along with problem size
Example: Sequential search

“n log n” time O(n*log n) Run time increases slightly faster 
Example: Quicksort

quadratic time O(n2) Run time increases as a square of the problem size.
Example: Bubble sort, nested loops

1



Note 10 Apr 2014

polynomial time O(nc)
where c>=1

Union of all algorithms that perform at O(n), O(n2), O(n3), …

exponential time O(cn)
where c>

Run time increases very rapidly as problem size increases.
Example: Travelling salesman problem

factorial time O(n!) Run time explodes. 20! = 1018.
Example: Brute force travelling salesman

Big-O Complexity Classes
Source: www.daveperrett.com/articles/2010/12/07/comp-sci-101-big-o-notation/

Even 100 “things” is tiny. What if your algorithm has to process 100K “things”?

2

http://www.daveperrett.com/articles/2010/12/07/comp-sci-101-big-o-notation/

