Ch 16.3 Algorithm analysis

Estimate the efficiency of an algorithm. Usually measuring time and space.

There's a BIG difference between measuring performance for algorithms vs. programs.

- Algorithms theoretical calculation, estimates, performance in the limit, average vs. worst case analysis, no accounting for implementation factors
- Programs measuring actual runtimes, language specific, implementation specific, includes many "reality" factors

Definitions

Basic step/operation - an algorithm step that is simple and executes in constant time

Complexity analysis - estimate of the basic steps in an algorithm to process a problem of size N; common to have two kinds of complexity analysis: worst-case and average-case

Asymptotic complexity - complexity analysis as problem size (N) gets large; this represents the general case

Big O notation

- Describes algorithm complexity at the limit as N approaches infinity
- Strip out constants and other terms overwhelmed as N gets large; example: 5n² + 10n + 7 is O(n²)
- Binary search is O(log n); this is pronounced "Big Oh of log N"
- "a computational problem is said to be in O(g(n)) if there exists an algorithm for the problem whose worst case complexity function is in O(g(n))"... page 995

Name	Big-O	Description/Example
constant time	O(1)	Run time is essentially independent of problem size Example: hash table lookup
logarithmic time	O(log n)	Run time increases slowly as problem size increases Example: Binary search
linear time	O(n)	Run time increases directly along with problem size Example: Sequential search
"n log n" time	O(n*log n)	Run time increases slightly faster Example: Quicksort
quadratic time	O(n ²)	Run time increases as a square of the problem size. Example: Bubble sort, nested loops

This table is an expansion on the list on page 995 in our text:

polynomial time	O(n ^c) where c>=1	Union of all algorithms that perform at O(n), O(n ²), O(n ³),
exponential time	O(c ⁿ) where c>	Run time increases very rapidly as problem size increases. Example: Travelling salesman problem
factorial time	O(n!)	Run time explodes. 20! = 10 ¹⁸ . Example: Brute force travelling salesman

Big-O Complexity Classes

Source: www.daveperrett.com/articles/2010/12/07/comp-sci-101-big-o-notation/

Big-O	Operations for 10 "things"	Operations for 100 "things"
O(1)	1	1
O(log n)	3	7
O(n)	10	100
O(n log n)	30	700
O(n^2)	100	10000
O(2^n)	1024	2^100
O(n!)	3628800	100!

Even 100 "things" is tiny. What if your algorithm has to process 100K "things"?