
Note 11 May 2014

Ch 12 - Exceptions and Files

12.1 Handling Exceptions
Exception is a class. Exceptions are objects. Cool. Actually Exception is-a Throwable.
There are many classes that extend Exception, like IOException. The Exception class
hierarchy is quite large. (page 735 and 749)

Use a try-catch block:
try {
 // code
}
catch(ExceptionType parameter) {
 // exception-handling code
}

Details:
● You can print an exception or get a “detail message string” for a Throwable at the

method getMessage()
● Catch multiple exceptions in a try block, by adding catch blocks one after another
● A finally block can appear after the try and all catch blocks. “The statements in a

finally block execute whether an exception occurs or not.” Example: close a file.
● An Exception that you don’t ever catch is caught by Java’s default exception handler.

It will print a stack trace of method calls. If you’re fond of this kind of message, you can
print this using the Throwable method printStackTrace().

Two flavors of exceptions:
➔ unchecked - those inherited from the Error class or RuntimeException class in

Java. These are usually critical errors.
➔ checked - exceptions usually handled in your code

Your methods must handle any checked exceptions by either: a) try-catch block, or b) declaring
that the method throws the exception. Like this:

public void example(int x) throws FileNotFoundException { … }

12.2 Throwing exceptions
You can throw your own exceptions. Format is:

throw new ExceptionType(messageString);

You can create your own exceptions just like a regular, old class. Example:
MyException extends Exception

1

http://docs.oracle.com/javase/7/docs/api/java/lang/Exception.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Throwable.html
http://docs.oracle.com/javase/7/docs/api/java/io/IOException.html

Note 11 May 2014

12.3 Advanced Files
Three subsections: binary files, random access files, and serialization

Binary Files
A file that contains raw binary data is known as a binary file (page 761)
Numbers we see as Unicode chars can be smushed into binary form to save space.

Write binary files using 2 classes:
● FileOutputStream - very low level, write bytes or raw data
● DataOutputStream. - higher level, write data types (int, float, etc) in binary

Usually wrap DOS around FOS, like this:
DataOutputStream dos =

new DataOutputStream(new FileOutputStream(“test.dat”));

Reading mirrors writing with FileInputStream and DataInputStream.

Random Access Files
A random access file allows a program to read data from any location within the file. (page 761)

● Use RandomAccessFile class: docs.oracle.com/javase/7/docs/api/java/io/
RandomAccessFile.html

● Data is still written sequentially.
● Data can be read in any order. Your call to seek() sets the file pointer to that byte

location. That’s where the next read occurs. Method signature: void seek(long
pos)

Serialization
Object serialization is the process of converting an object to a series of bytes and saving them
to a file. Deserialization is the process of reconstructing a serialized object. (page 761)

Steps:
● Make sure your class implements Serializable.
● Write your serializable objects using class ObjectOutputStream. The method of

interest is writeObject(Object obj).
● Read your serializable objects using class ObjectInputStream. The method here is

(you guessed it) Object readObject().

2

http://docs.oracle.com/javase/7/docs/api/java/io/RandomAccessFile.html
http://docs.oracle.com/javase/7/docs/api/java/io/RandomAccessFile.html

