Ch 12 - Exceptions and Files

12.1 Handling Exceptions

Exception is a class. Exceptions are objects. Cool. Actually Exception is-a Throwable.
There are many classes that extend Exception, like TOException. The Exception class
hierarchy is quite large. (page 735 and 749)

Use a try-catch block:
try |
// code
}

catch(ExceptionType parameter) {
// exception-handling code

Details:

e You can print an exception or get a “detail message string” fora Throwable at the
method getMessage ()

e Catch multiple exceptions in a try block, by adding catch blocks one after another

e A finally block can appear after the try and all catch blocks. “The statements in a
finally block execute whether an exception occurs or not.” Example: close a file.

e An Exception that you don’t ever catch is caught by Java’s default exception handler.
It will print a stack trace of method calls. If you're fond of this kind of message, you can
print this using the Throwable method printStackTrace ().

Two flavors of exceptions:
= unchecked - those inherited from the Error class or RuntimeException class in
Java. These are usually critical errors.
- checked - exceptions usually handled in your code

Your methods must handle any checked exceptions by either: a) try-catch block, or b) declaring
that the method throws the exception. Like this:

public void example(int x) throws FileNotFoundException { .. }

12.2 Throwing exceptions
You can throw your own exceptions. Format is:
throw new ExceptionType(messageString);

You can create your own exceptions just like a regular, old class. Example:
MyException extends Exception

http://docs.oracle.com/javase/7/docs/api/java/lang/Exception.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Throwable.html
http://docs.oracle.com/javase/7/docs/api/java/io/IOException.html

12.3 Advanced Files
Three subsections: binary files, random access files, and serialization

Binary Files
A file that contains raw binary data is known as a binary file (page 761)
Numbers we see as Unicode chars can be smushed into binary form to save space.

Write binary files using 2 classes:
e TileOutputStream - very low level, write bytes or raw data
e DataOutputStream. - higher level, write data types (int, float, etc) in binary

Usually wrap DOS around FOS, like this:
DataOutputStream dos =
new DataOutputStream(new FileOutputStream(“test.dat”));

Reading mirrors writing with FileInputStream and DataInputStream.

Random Access Files
A random access file allows a program to read data from any location within the file. (page 761)
e Use RandomAccessFile class: docs.oracle.com/javase/7/docs/api/javalio/
RandomAccessFile.html
Data is still written sequentially.
Data can be read in any order. Your call to seek() sets the file pointer to that byte
location. That’'s where the next read occurs. Method signature: void seek(long

pos)

Serialization
Object serialization is the process of converting an object to a series of bytes and saving them
to a file. Deserialization is the process of reconstructing a serialized object. (page 761)

Steps:
e Make sure your class implements Serializable.
e Write your serializable objects using class ObjectOutputStream. The method of
interestis writeObject (Object obj).
e Read your serializable objects using class ObjectInputStream. The method here is
(you guessed it) Object readObject ().

http://docs.oracle.com/javase/7/docs/api/java/io/RandomAccessFile.html
http://docs.oracle.com/javase/7/docs/api/java/io/RandomAccessFile.html

