
Note 17 May 2014

Ch 20 Linked List

20.1 Intro

Definitions:
● successor - the element after the current element in a list
● predecessor - the element before the current element in a list
● contiguous allocation - large memory chunk, as used in an array
● linked allocation - non-consecutive memory, allocated with each element, as in linked list
● node - object that stores a list element and a reference to the next node in the list
● head - the first element in the list
● tail - the last element in the list

Basics in LinkedList0 example on page 1174: create lists, add nodes to end of list, insert
nodes in middle of list, removing a node, traversing a list…

/* the concepts are easy, the code is detailed and error-prone to write the first time */

20.2 Linked List Operations
Most basic methods:

public interface LinkedList1Int {
boolean isEmpty();
int size();
void add(String e); // add to end
void add(int index, String e); // add at position
String remove(int index); // remove by position
boolean remove(String e); // remove by value

}

20.3 Doubly-linked and circularly-linked Lists

In a doubly-linked list, each node has a next and previous node pointer.
In a circular list, the last node’s pointer is the first node and (if doubly-linked), the first node’s
previous pointer is the last node.

See doubly-linked list example in book: page 1191.

1

Note 17 May 2014

Doubly-linked list:

Circular linked list:

20.4 Recursion and Linked Lists
“A linked list is an inherently recursive data structure” -page 1197

2

