Program #2 - Shape factory

Let’s make some shapes

Logistics:
e Due: Mon May 5, 2014
e Worth: 10 points

1. Description

We have two interfaces:
e Shape - a circle or square or whatever... with an area and center and bounding box
e ShapeFactory - a guy who knows how to create a given Shape

I'll place these on the k: drive.

Program #2 has two major components:
1. A viewer so that you can see and select your shapes
2. A console-based command line so that you can add shapes and other things

Class structure

When implementing an actual shape, like a circle, the following relationships exist:
e Circleis-a Shape
e CircleFactoryis-a ShapeFactory

Here’s the UML:

ShapeFactory Shape

CircleFactory Circle

Your ShapeViewer can create and view shapes. The relationships are:

Program #2 1 Shape Factory

e ShapeViewer is-a JPanel (override the paintComponent () method)
e ShapeViewer has-a ShapeFactory (so that it can create new shapes)

e ShapeViewer has-a Shape (a list of shapes to draw)

The UML:

JPanel

ShapeFactory

ShapeViewer

Shape

ShapeViewer

There should be no code specific to any concrete shape in your ShapevViewer. You'l
need a list of factories for the viewer to use and a list of shapes that need to be drawn.

Override the paintComponent () method to draw your shapes:

public void paintComponent (Graphics g) {

super.paintComponent (g); // always

for each shape in viewer, draw it

Allow the user to select a shape. This will requires a MouseListener (or adapter).

Program #2 2

Shape Factory

Console commands
The console will be used to send commands to the viewer.

Commands include:

add [count] [shape] [color] [name] - add shapes to the viewer
list [shape]

area [shape]

clear

exit

By default, shapes will have random size, color and location. We'll flesh out the these
commands more in class.

2. Implementation

Plan

2 o

. Step-by-step. Slics and dice. Go!

Create amain (), a frame and empty ShapevViewer

Create one concrete shape: Circle and CircleFactory

Create a circle in your code, add it to the viewer and draw it. Then two circles, etc.
Try another shape.

Create your console command loop to add shapes from your console

Add a mouse listener to your viewer to select a shape

There are more steps, but when you are able (and confident) to add one shape the others
will be gravy.

Pseudo-code for your Program #2 main() might look something like this:

main () {
Create a frame
Create a ShapeViewer, add it to the frame
Create shape factories, add each to the ShapeViewer
Show the frame

Create a console command and run it

Implement the shapes: Circle, Oval, Rectangle, Square, and Line. Of course, each shape
will require a corresponding factory to create it.

Program #2 3 Shape Factory

Extras!
e Implement one additional shape of your own. As a final step, we’ll share our
individual shape and factory, using the k: drive.
e Define and add your own command to the console command loop

| will provide you with some help in generating these random things: locations, sizes,
colors, and names.

3. Grading
Please place the following in your program2/ k: drive folder:
e A README file describing the state of your program
e Your beautiful Java code that follows our Java Coding Guidelines
e Include any images you would like me to look at. Explain them in your README.

Program #2 - Shape viewer

Program #2 4 Shape Factory

