Lab01 - Princeton circles
Due: Fri Apr 3, 2015

Here’s the assignment. It's from Princeton (la-dee-da): introcs.cs.princeton.edu/java/15inout/

26. Write a program Cirecles. java that draws filled circles of random size at randem positions in the unit sguare, producing
images like those below. Your program should take four command-line arguments: the number of circles, the probability that
each circle is black, the minimum radius, and the maximum radius.

2001 .01 .01 100 1 .01 .05 JC .5 .01 JS 50 .75 .1 .2
c 8%, Ne ST '
._ ™
h‘ l'.,. ? ?.J
X *3&6' 19

LT
Looks like fun. Let’s go! Step by step.

Like so many tasks, the key to programming is to partition the problem into manageable
chunks. Divide and conquer! We’'ll try to that here in Lab01.

Step 1. Hello, LabO1
Create your LabO01 class. Let’s put main () in there.

public static void main(String[] args) {
System.out.println(“Hello, Lab 01”);

Step 2. JFrame
We don’t have the code yet, but we can outline our steps in pseudo-code. Place these steps
in your main () use comments.

main {
create a frame
create a panel for our circles, put it in the frame
create some circles, adding them to the panel
make the frame visible

On page 367, the JFrame class is introduced in our text. Create your frame and make it
visible. Set the background color to something exotic.

On page 880, there’s a section on drawing shapes in JApplet or JPanel classes. Try to
create a JPanel, and draw one circle in it. You pick the location, size and color.

http://introcs.cs.princeton.edu/java/15inout/

Step 3. UML
Once we’re able to create a JFrame, add a Jpanel to the frame, and draw a circle in the
JPanel, then we're ready to tackle the meatier Princeton circles problems.

This is a UML class diagram describing a design for our solution. We'll run with this after our
class discussion on Ch 11 Inheritance.

JPanel

FunPanel o ———— FunCircle

From this diagram, we know that:
e FunPanel is-a JPanel, and
e FunPanel has-a FunCircle

Step 4. FunPanel

Create your own panel that is-a Jpanel. Override the paintComponent () method to draw
just one circle. There’s an example of this on page 898-899 in our text.

Don'’t forget to paint the superclass!

Step 5. FunCircle
Drawing one circle is nice. Drawing many is better. This step has 3 parts: a, b, c.

a) Create FunCircle class - To create a circle we need to store its location, radius and color.
We need a way to draw it. Here’s a more detailed UML diagram of FunCircle.

FunCircle
inc X
int ¥
int radius
Color c

FunCircle(=1, yl, rad, color)
void draw(Graphics)

b) Change FunPanel - We also need to change FunPanel so that we can add circles to it
and draw them. Here’s the UML for these changes:

FunPanel

addCircle(FunCircle fc)
void paintComponent(Graphics)

c) Change main() - In Lab01, change main () to create a FunCircle and then add it to the
FunPanel using the new code you've written.

Step 6. ArraylList of circles

Wait a second... we’re still only drawing one circle. To draw many circles, we need to change
FunPanel to keep track of many circles rather than one. Use an ArrayList to do this. See
page 515 for help doing this.

Here are the necessary changes to FunPanel:
=> Add class variable: ArrayList<FunCircle> circles;
= Change addCircle () to use your list.
-> Change paintComponent () to draw all the circles in the list.

To test this change, create and add a few circles in main (). And run it!

Step 7. Many, random circles
This lab is getting long, so | have provided you with code to randomly choose things like circle
location, radius, and color. The class is RandomHelper, and it’s in my k: drive.

In our final step, we’ll create hundreds of circles in a loop and add them to our panel.
Remember the 4 Princeton experiments way back at the beginning? Let’s create a method in
Lab01 to try each case: princetonl () through princeton4 ().

My princetonl () method is on the last page as an example.

Once you get the feel of things, feel free to change the parameters to get results that you find
fun and interesting.
thanks... yow, bill

public static void princetonl (FunPanel fp) {
Dimension dim = fp.getPreferredSize(); // panel size

for(int i = 0; 1 < 500; 1i++) {
// get the location, radius and color of the circle
Point p = RandomHelper.randomLocation(dim.height);
int radius = 20;
Color ¢ = RandomHelper.randomColor () ;

// create the circle and add it to the panel

FunCircle fc = new FunCircle(p.x, p.y, radius, c);
fp.addCircle (fc);

L3 PRINCETON
' UNIVERSITY

