Program #3 - Air 161
“Fly the friendly skies of Air 161”

Logistics:
e Due: Mon May 18, 2015
e Worth: 6 points (6% of your class grade)

In Program #3, we’ll create a simple console-based reservation system for your favorite
airline and mine, Air 161.

1. Introduction
The flow of Program #3 is: 1) read a reservations file, 2) modify the reservations using
console text commands, and 3) save the new resv file. Like this:

P 4
Resv File [— ri?rralngl 3 ——| ResvFile

The Resv file format will be our usual CSV with lines beginning with ‘# as comments.

2. Commands

Commands are typed in your console. They include:

reserve <seat> <passenger> - make reservation for a seat (seat must be open!)
unreserve <seat> - remove seat reservation

report - print all seats and their passengers (or open)

open - list all open seats on the plane

save - save the reservations to their file

exit - exit the console program (ask about saving changes!)

\l

YYVVYY

I'll paste a simple sample session (SSS) using these commands in the design notes.



3. Design
Your design should include classes like these:
e Resv - areservation: seat/passenger data
e FlightResvs - holds all a list of Resv objects for a flight
e ResvConsole - command console for changing resvs
e Program3 -main () (Hello, Program #3)

For sure, your classes don’t have to match these exactly. You are the designer. But |
don’t want to see HUGE main () methods or other disorganized solutions.

About your solution... | have these other specific design requirements:
e param to main() - If a resv file name is passed as a parameter to main (), then
use it. Otw, ask the user for a resv file at the start of the session.
e toString() - Write a toString () method for some classes (Resv,
FlightResv)and call it
e StringBuilder class - Use a StringBuilder to build a complex string
somewhere (toString () anyone?)
Exception - Create an exception class for at least one error in the console.
GUI - your class design should be done with a GUI application in mind as well.
That is, can your console classes be usable to create a GUI (as our WordTracker
was in Program #2, eh!).
Go!

4. Grading
Create a program3 folder in your k: drive.
Place these files in that folder:
e A README file describing the state of your program
e All the Java files that comprise your Program #2 solution

All your code must follow our 161 Coding Guidelines. Ugly code will be penalized with a
0-100% reduction in points. A program that doesn’t even compile is worth 0 points.

And don’t forget... all the special Program #3 design requirements listed above!

Good luck.
yow, bill

PS - Design notes are here: Program #3 Design Notes



https://docs.google.com/document/d/1PJrKzLLaSwjQd_A2QDIeH_7xXy6fhkXu83L2H_veYzE/edit?usp=sharing

