Program #3 - Design Notes
Here are some connect-the-dot notes on Program #3 for you.

1. The Reservation File
The reservation file is a CSV file that supports comments. I'll supply you with some test
files on the k: drive. The file looks like this:

A line that starts with the pound sign is a comment
The first un-commented line defines the CSV fields
Seat, Passenger

1A, Prof Bill

1B,Ally A

2A,Matt M

2B, open

2C,WilliamW

2D, open

Details:
e Our usual CSV rules apply: Lines that start with ‘#” are comments, and values are

separated by commas
The first non-comment line defines the fields: Seat and Passenger
If Passenger is “open” then the seat is currently not reserved
All seats in the plane will be listed in the file. Not all rows have the same number
of seats.
| have some test files for you on the k: drive. | used a couple of real aircraft for my seat
arrangements.

Tiny example - Cessna 402 has 8 seats in 4 rows. EZ.

Biggie example - Fokker 50 has 50 seats in 13 rows... | won’t use their seat letters
though. It's A, B, C, D for us. | do, however, like the missing (unlucky) row 13.

’\u AB9058550909E .
[P’ [,11:3305BARABRAAA

v

12 3 4 5 & T 8 8 W oM 12 M

LAVATORY GALLEY

2. Simple Sample console session
Here’s a (bogus) console session (user typing is in bold)

***>
Welcome to p3 Flight Resv System (TM)
by Prof Bill, CSC 161

* k>

Please enter your flight:

Air PB 007

Enter your resv file name:

pb007.txt

Thank you.

There are 50 seats on flight Air PB 007.
21 of these seats are open.

p3> reserve Al George W
Error: Seat Al is already reserved to Thomas J

p3> reserve A2 George W
Your reservation is confirmed: A2,George W

p3> report
Flight Air PB 007 seat assignments are:
1A, Thomas J
1B, George W
2A, open
2B, open
2C,Benjamin F
2D, Samuel A
3A, open
. and so on
p3> open
20 seats are open on Flight Air PB007. They are:
2A, open
2B, open
3A, open
4C, open
. and so on
p3> save
Num of resv changes made: 1
Resvs saved to file pb007.txt

pP3> exit
Thank you. Please drive through.

3. Organization
There were some questions about organizing classes on Friday.
Here are some comments:

% Your Resv class should be small, holding one reservation: the seat and passenger
data.

% The ResvSystemn class should do a lot of the work in making and breaking
reservations. It holds a list of Resv objects.

% The ResvConsole is the guy who interacts with the user via the console:
System.out.println and keyboard scanner. He has-a ResvSystem and calls
system methods to get the work done on reservation changes and reports.

% And Program3 holds your main () . A guideline, not a rule - a BIG main() is usually a
problem (because it's code that can’'t be shared) and a small, simple main() is usually
on the right track.

I am not dictating what you call your classes and exactly what goes where. Your mileage may
vary. For example, where do you actually read the file? ResvSystem? ResvConsole? It's up to
you.

| am dictating, however, that your classes work if we were building a gui. For example, in my
setup, | envision a ResvPanel thatis-a JPanel and has-a ResvSystem. | could call system
methods to add and remove reservations. And then call a system method to save my work to
a file.

A couple more notes:
e Don’t forget to mind the design requirements: param from main(), exception, etc.

e Don’t hard-code any file names into your code. Ask the user!

thanks... yow, bill

