
C Programming Helper
Prof Bill - Mar 2018

This is a little helper document for quickly plunging into the C Programming Language.

The sections are:

A. Introduction
B. The Command Line
C. C Coding
D. My Program #1 Stuff

thanks...yow, bill

1

A. Introduction
The C programming language is 45 years old (gasp), and it’s the language I used in my
first real nerd job out of school (gasp gasp). It’s still important and used today.

The book:

The C Programming Language, ANSI C
by Brian Kernighan and Dennis Ritchie

Here’s a pretty nice PDF of the original K&R book. The page numbers are off, but still…

The C programming Language (PDF)

The 2nd edition should work. It’s here in a bunch of formats:

archive.org/details/CProgrammingLanguage2ndEditionByBrianW.KernighanDennisM.Ritchie

A little history: “The origin of C is closely tied to the development of the Unix operating
system” and “Also in 1972, a large part of Unix was rewritten in C.[13] By 1973, with the
addition of struct types, the C language had become powerful enough that most of the
Unix's kernel was now in C.”

You get a nice overview from Wikipedia:

en.wikipedia.org/wiki/C_(programming_language)

2

http://alvand.basu.ac.ir/~dezfoulian/files/Programming/Prentice%20Hall%20-%20The%20C%20Programming%20Language-%20Brian%20W.%20Kernighan,%20Dennis%20M.%20Ritchie,%202nd%20ed.,%20ISBN%20.pdf
https://archive.org/details/CProgrammingLanguage2ndEditionByBrianW.KernighanDennisM.Ritchie
https://en.wikipedia.org/wiki/C_(programming_language)

C is a lower-level programming language than Java. It doesn’t have objects or classes
or exceptions or interfaces or abstract thingies. A C program is a collection of functions.
There’s no garbage collection; you allocate and free memory yourself. C has pointers.
We’ll learn a lot about pointers in our programming assignment.

Fwiw, here’s a big comparison table: introcs.cs.princeton.edu/java/faq/c2java.html
thanks… yow, bill

3

http://introcs.cs.princeton.edu/java/faq/c2java.html

B. The Command Line
IDE’s like Eclipse and NetBeans are great. Hey, so are windows and the mouse and
GUI’s and… But typing commands at a command line or shell is an important skill for a
programmer. Here are two ways to get started.

● On Windows, run cmd
● On Mac, run the Terminal application in Utilities

From the command line, file system from the command line:

● cd <folder> - change directory
● ls - list files

In Windows, you can use Notepad++ to edit your C programs.

Compile C programs with the Gnu C compiler: gcc.gnu.org/

● The gcc compiler is available on our school computers. So is the debugger, gdb.
● If you have a Mac at home (like I do), gcc is included in Mac’s Xcode library. I

couldn’t find gdd on my Mac, but (google google) a program called lldb was
available and worked fine: lldb.llvm.org.

Here are some common gcc commands/options:

compile hello.c, creating executable output a.out

gcc hello.c

compile hello.c, creating executable output hello

gcc hello.c -o hello

compile hello.c, with extra files for debugging

gcc hello.c -g -o hello

gdb hello

#compile hello.c to create hello.o, but no executable

gcc -c hello.c

Here’s a nice, short summary of gdb debugging commands:

www.tutorialspoint.com/gnu_debugger/gdb_commands.htm

4

https://gcc.gnu.org/
http://lldb.llvm.org/
https://www.tutorialspoint.com/gnu_debugger/gdb_commands.htm

The gdb commands I use most are:

➔ l - list code, so you can see where to set breakpoints
➔ l <line-num> - list code at line number
➔ b <line-num> - set breakpoint at line-num
➔ run - run program to the next breakpoint
➔ n - next, execute one line
➔ s - step, execute one line of code, but step into function calls
➔ p <variable> - print value of a variable
➔ help
➔ q - quit

/* When I installed gcc on my MacBook, gdb was not there. (google google) So, on my
Mac, I use lldb instead. The interface is nearly identical. */

5

C. C Coding
There are a million online tutorials and other resources. I’ll leave you to your googling.
Of the stuff I’ve looked at, I think I liked this one best. We’ll use this in class some.

www.learn-c.org

Here are two different, easy summaries of functions in the C standard library:

www.tutorialspoint.com/c_standard_library/index.htm
en.wikipedia.org/wiki/C_standard_library

The most important of these are:

➢ stdio.h - always include this
➢ stdlib.h - you can always include this one too; includes malloc() and free()
➢ string.h - string functions

Naming conventions
The main thing here: be consistent. I chose this style from a stackoverlfow post.

The most important thing here is consistency. That said, I follow the GTK+ coding
convention, which can be summarized as follows:

1. All macros and constants in caps: MAX_BUFFER_SIZE,
TRACKING_ID_PREFIX.

2. Struct names and typedef's in camelcase: GtkWidget, TrackingOrder.
3. Functions that operate on structs: classic C style: gtk_widget_show(),

tracking_order_process().
4. Pointers: nothing fancy here: GtkWidget *foo, TrackingOrder *bar.
5. Global variables: just don't use global variables. They are evil.
6. Functions that are there, but shouldn't be called directly, or have obscure uses,

or whatever: one or more underscores at the beginning:
_refrobnicate_data_tables(), _destroy_cache().

For example, in Program #1 I have a ItemList struct. I have functions like
read_wheel_file(). And a constant like MAX_WHEEL_SIZE.

6

http://www.learn-c.org/
https://www.tutorialspoint.com/c_standard_library/index.htm
https://en.wikipedia.org/wiki/C_standard_library
http://stackoverflow.com/questions/1722112/what-are-the-most-common-naming-conventions-in-c

Pretend Objects
C isn’t object-oriented. At all. But we can pretend… well, sort of.

Let’s pretend to create an object (a “class” in Java) called Professor. A professor is a
struct. We’ll define the professor-related struct, a typedef name, and function definitions
in one header file: professor.h.

#ifndef PROFESSOR_H

#define PROFESSOR_H

/* Part 1. Define the professor struct */

struct Professor {

char * name;

int dept_code;

struct College *employer;

};

typedef struct Professor *Professor; /* Part 2. a nicer name */

/* Part 3. extern the prof-related functions */

extern Professor *new_professor(char *nm, int code, struct

college *emp);

extern void grade_programs(Professor *p, ProgramList

*programs)

extern int get_tenure(Professor *p)

#endif

The #ifndef, #define and #endif statements are there to guard the header file. They
prevent the header file from being compiled more than once.

Part 1. The professor struct and its fields are defined here.

Part 2. A typedef makes it a little nicer to reference a professor as “Professor”, rather
than “struct professor”.

Part 3. The extern allows functions in other files to call your Professor functions.

7

Notice the big difference here between C and Java. This object setup is all optional in C.
In Java, it’s all part of the language.

Some K&R notes
I read K&R and took some supplemental notes. These things struck me as important.

Ch 1 Tutorial Intro
● C printf is like printf in Java
● Use #define for constants; #define MAX_LINE 100
● All function arguments are pass-by-value. You can use the “address of” operator

(&) to pass the address of a variable into a function. This is also called a “pointer
to” the variable. See swap() function example in Chapter 5!

● In C, char array (char []) or char pointer (char *) is used to represent a string. You
must allocate space for the string characters if using char *. Unlike JAva, these C
strings are mutable.

Ch 2 Types, Operator, Expressions
● Only 4 basic built-in types in C: char, int, float, double

Ch 3 Control Flow

Ch 4 Functions

Ch 5 Pointers and Arrays
● See swap() function for an excellent example of pointers and the address of

operator (&). Use & to effectively pass-by-reference.
● Pointers and arrays are very similar. char * is like char [].
● In C, you can define a pointer to a function. Cool. We won’t need this though.

Ch 6 Structures
● A struct defines related fields, like a class in Java. No methods though!

struct Person {
 char *name;
 int dept_code;
 double hourly_salary;
};

8

● Access a field for struct with dot (.): p.name. Access field for a struct pointer
using two-char arrow (->): p2->name. We usually deal with pointers to structs!

● structs can be self-referential, as in list nodes.
● typedef struct XXX XXX… to rename the struct and make code a little cleaner.

Ch 7 Input Output
● #include <stdio.h>... I always do this too: #include <stdlib.h>
● you can redirect stdin with < in command line. Redirect stdout with >.

○ program1 < test1.txt # test.txt is now stdin
○ program1 < test1.txt > test1_out.txt

● File access. Google fopen().
○ FILE *fp;
○ fp = fopen(“test.txt”, “r”);

● In Unix, programs return integers. exit(0) on success. exit(1), or any non-zero
value on error.

● Use malloc or calloc for memory allocation. See examples. On diff: calloc zeroes
out memory that has been allocated. Use free() to free up space.

○ int array1[100]; // static array
○ int *array2; // dynamic array
○ ip = (int *) calloc(100, sizeof(int));

Ch 8 Unix
We’re running on PC/Windows systems at school and won’t need this chapter.

9

D. My Program #1 stuff
I’m writing Program #1 too. I’ll add notes from my implementation here.
My advice to you: Start early. Stay late. Email me if you get stuck.
This is a challenging program in a new programming language. Also, C doesn’t have a
lot of modern conveniences that we may be user to. Beware! thanks… yow, bill

Fri Mar 30
Together, we identified 3 classes in P1:

● dll.c - doubly-linked list
● wheel.c - the wheel
● program1.c - the program, includes main()

What kinds of functions should be in these classes?

➔ dll.c - linked list operations like: create, add, get, copy, remove, print...
➔ wheel.c - operations like our command set: first, last, reverse, spin…
➔ program1.c - main(), command_loop(), others?

Example: What should your main() look like? Here’s some pseudocode.

/* functions in main.c */
main() {

print fancy program #1 greeting
create a new empty wheel
call command loop to read command, execute it
print fancy program #1 goodbye

}
command_loop() {

/* coming soon… */
}

thanks… yow, bill

Sat Mar 31
You’ll find “some help” in my common_area folder on the k: drive.

● some_help.[ch] - some I/O and string functions that are kind of nasty
● some_help_test.c - examples of how to call these functions

10

Copy my files if you want to use these functions. Some notes about this:
➔ Include them in your gcc command. Example: if you are working on program1.c:

$ gcc program1.c some_help.c

$ a

➔ Notice that you don’t include the test driver (some_help_test.c) in your gcc

command. It has a main() and this will cause your link step to fail. I wouldn’t even
bother copying the test driver… just peek at it to see how functions are called.

➔ Once compiled and linked, this will create an executable called a.exe, which is
the default. While your coding, a.exe is fine… and fast to type, too.

➔ Notice how all my functions use a prefix: sh_. I do this so I won’t conflict with
other function names. I do this throughout: dl_, wheel_, etc.

My process. After some puttering, I have decided to start my Wheel (wheel.c) later. I am
currently focusing on:

● program1.c - my main(), intro(), and then command loop (some help functions
are nice here)

● dl_list.c - my doubly-linked list; I have dl_list_test.c which has its own main(); I
add a function and then try calling it in my test driver

Once I’m satisfied that my program1 and dl_list basics work, then I’ll add the meat to the
sammich, wheel.c.

Changed my files to: my_list.c, my_list.h, and my_list_test.c. Much nicer.

❏ My MyList and Node structs are defined in my_list.c.
❏ I have a typedef in my_list.h to make MyList available; this also loses the struct in

front of everything.
typedef struct MyList MyList; /* lose the "struct" */

❏ With this, the first three functions in my header are:
extern MyList *ml_create();

extern void ml_delete(MyList *the_list);

extern MyList *ml_copy(MyList *the_list);

❏ Notice that I have to pass in a list to my functions. There’s no object.method() in
C. Also notice, I always use “MyList *”. This means “a pointer to MyList”. Without
it, my functions expect the struct itself. this is a major difference between Java
and C. In Java, everything is a pointer.

11

Mon Apr 2
I’ll elaborate on these two “extra topics” in class:

● I added a Makefile to my program1 folder. The make command simplifies your
tight loop: edit, compile, run.

○ Simple make example here:
stackoverflow.com/questions/21548464/how-to-write-a-makefile-to-compil
e-a-simple-c-program

○ My example is on the k: drive, common_area/program1.
● If it’s for you tough to get on campus, here are 2 online gcc environments. They

both have “issues”, but still…
○ www.c9.io - Cloud9 is great. You work in the cloud, but it’s command +

gcc and gdb, just like at school. The only issue: you need a credit card to
signup. It’s free; they just want to verify that you’re a real person.

○ https://www.onlinegdb.com/online_c_compiler - Thanks to Maia P for this
one. I haven’t used it much. It looks fine for trying small things.

○ Regardless of where you work or how you get it done: 1) get it done, and
2) ALWAYS run your program here at school before turning it in.

More on my process…

➢ Get my doubly-linked list working first: my_list.[ch]
➢ Then, get my command loop with one command going: program1.c. I think my

first command actually was help.
➢ Then I started in on my wheel functions: wheel[ch]. I did this one at a time.

Critical! It’s absolutely critical to code and test each small feature before you
move on.

➢ My first feature: create an empty wheel in program1 main(), add the size
command to the loop.

➢ Once your infrastructure is in place, just keep picking off commands one at a
time. Start with the simplest and work to the big ending: spin!

➢ I’m leaving my file commands for last.

C stuff that I’m using:

➔ To generate random things, you’ll use the C functions srand() and rand().
https://www.tutorialspoint.com/c_standard_library/c_function_rand.htm

➔ I include <stdio.h> and <stdlib.h> to get all the standard C library functions
➔ Use malloc() to allocate memory, like a Node or MyList. Use free() to delete.
➔ Some handy string functions (char * is a string) include strlen(), strncmp(),

strcpy().

12

https://stackoverflow.com/questions/21548464/how-to-write-a-makefile-to-compile-a-simple-c-program
https://stackoverflow.com/questions/21548464/how-to-write-a-makefile-to-compile-a-simple-c-program
http://www.c9.io/
https://www.onlinegdb.com/online_c_compiler
https://www.tutorialspoint.com/c_standard_library/c_function_rand.htm

➔ There’s some good file stuff in my some_help functions: fgets(), scanf(). But I
wrote some_help, so that you could avoid some of the tough patches.

➔ Java only has pointers. C has structs directly or pointers. In our app, we’ll always
use pointers, so variables will almost always have a “*” in them. For example, in
my_list.c:

Node *n;

my_list.c notes:

● the Node struct is defined in my_list.c. There’s no extern or anything in the
my_list.h header file because it’s only used internal to my_list.c

● copy item strings when they are added to the lists; use my some_help function
here.

● when you delete a list, you must free the memory associated with each Node!
● when you reverse your list… do it in place. No creating a whole new list and

adding tail-first. Efficiency!

Design - Your doubly-linked list should have no wheel references in it. This is just a
general-purpose linked list. The Wheel is just one of many potential users of this code.
In my P1, the Wheel has-a MyList. This means that MyList knows nothing about Wheel.

wheel.c notes:

● Wheel has-a MyList. That means that MyList is a member of the Wheel struct:
● Many of these functions are very thin… a line or two. They are mostly just calls to

a MyList function that does the heavy lifting.

Design - Your Wheel should have no references to program1 in it. A good test of this:
Could a gui use the wheel.c code you written, just as program1 uses it for a console
app?

13

Thu Apr 5
Last on my TODO list… files.

file write - aka save your wheel; use fopen() and fprintf(); here’s the setup:

char *file_name = “test.txt”;

FILE *fp = fopen(file_name, "w");

if(fp == NULL) {

 printf("Error: can't open file=%s", file_name);

}

else {

 fprintf(fp, "Hello, Bill\n");

 // more code...

 fclose(fp); // must close your file!

}

file read - aka read your wheel; use fopen() and my some help function; go:
#define MAX_LINE 256

char line[MAX_LINE];

char *file_name = “test.txt”;

FILE *fp = fopen(file_name, "r");

if(fp == NULL) {

 printf("Error: can't open file=%s", file_name);

}

else {

 int ret;

 ret = sh_get_line(line, MAX_LINE, fp);

 // if ret is 0, the EOF, else more code...

 fclose(fp); // must close your file!

}

14

