
C Programming Helper
Prof Bill - Mar 2018

This is a little helper document for quickly plunging into the C Programming Language.

The sections are:

A. Introduction
B. The Command Line
C. C Coding
D. My Program #1 Stuff

thanks...yow, bill

1

A. Introduction
The C programming language is 45 years old (gasp), and it’s the language I used in my
first real nerd job out of school (gasp gasp). It’s still important and used today.

The ​book​:

The C Programming Language, ANSI C
by Brian Kernighan and Dennis Ritchie

Here’s a pretty nice PDF of the original K&R book. The page numbers are off, but still…

The C programming Language (PDF)

The 2nd edition should work. It’s here in a bunch of formats:

archive.org/details/CProgrammingLanguage2ndEditionByBrianW.KernighanDennisM.Ritchie

A little ​history​: “The origin of C is closely tied to the development of the Unix operating
system” and “Also in 1972, a large part of Unix was rewritten in C.[13] By 1973, with the
addition of struct types, the C language had become powerful enough that most of the
Unix's kernel was now in C.”

You get a nice overview from Wikipedia:

en.wikipedia.org/wiki/C_(programming_language)

2

http://alvand.basu.ac.ir/~dezfoulian/files/Programming/Prentice%20Hall%20-%20The%20C%20Programming%20Language-%20Brian%20W.%20Kernighan,%20Dennis%20M.%20Ritchie,%202nd%20ed.,%20ISBN%20.pdf
https://archive.org/details/CProgrammingLanguage2ndEditionByBrianW.KernighanDennisM.Ritchie
https://en.wikipedia.org/wiki/C_(programming_language)

C is a lower-level programming language than Java. It doesn’t have objects or classes
or exceptions or interfaces or abstract thingies. A C program is a collection of functions.
There’s no garbage collection; you allocate and free memory yourself. C has pointers.
We’ll learn a lot about pointers in our programming assignment.

Fwiw, here’s a big comparison table: ​introcs.cs.princeton.edu/java/faq/c2java.html
thanks… yow, bill

3

http://introcs.cs.princeton.edu/java/faq/c2java.html

B. The Command Line
IDE’s like Eclipse and NetBeans are great. Hey, so are windows and the mouse and
GUI’s and… But typing commands at a ​command line​ or shell is an important skill for a
programmer. Here are two ways to get started.

● On Windows, run ​cmd
● On Mac, run the ​Terminal​ application in Utilities

From the command line, file system from the command line:

● cd <folder> - change directory
● ls - list files

In Windows, you can use Notepad++ to edit your C programs.

Compile​ C programs with the Gnu C compiler: ​gcc.gnu.org/

● The ​gcc​ compiler is available on our school computers. So is the debugger, ​gdb​.
● If you have a Mac at home (like I do), gcc is included in Mac’s Xcode library. I

couldn’t find gdd on my Mac, but (google google) a program called ​lldb​ was
available and worked fine: ​lldb.llvm.org​.

Here are some common gcc commands/options:

compile hello.c, creating executable output a.out

gcc hello.c

compile hello.c, creating executable output hello

gcc hello.c -o hello

compile hello.c, with extra files for debugging

gcc hello.c -g -o hello

gdb hello

#compile hello.c to create hello.o, but no executable

gcc -c hello.c

Here’s a nice, short summary of gdb debugging commands:

www.tutorialspoint.com/gnu_debugger/gdb_commands.htm

4

https://gcc.gnu.org/
http://lldb.llvm.org/
https://www.tutorialspoint.com/gnu_debugger/gdb_commands.htm

The gdb commands I use most are:

➔ l - list code, so you can see where to set breakpoints
➔ l <line-num> - list code at line number
➔ b <line-num> - set breakpoint at line-num
➔ run - run program to the next breakpoint
➔ n - next, execute one line
➔ s - step, execute one line of code, but step into function calls
➔ p <variable> - print value of a variable
➔ help
➔ q - quit

/* When I installed gcc on my MacBook, gdb was not there. (google google) So, on my
Mac, I use lldb instead. The interface is nearly identical. */

5

C. C Coding
There are a million online ​tutorials ​and other resources. I’ll leave you to your googling.
Of the stuff I’ve looked at, I think I liked this one best. We’ll use this in class some.

www.learn-c.org

Here are two different, easy summaries of functions in the C standard library:

www.tutorialspoint.com/c_standard_library/index.htm
en.wikipedia.org/wiki/C_standard_library

The most important of these are:

➢ stdio.h - always include this
➢ stdlib.h - you can always include this one too; includes malloc() and free()
➢ string.h - string functions

Naming conventions
The main thing here: be consistent. I chose this style from ​a stackoverlfow post​.

The most important thing here is consistency. That said, I follow the GTK+ coding
convention, which can be summarized as follows:

1. All macros and constants in caps: MAX_BUFFER_SIZE,
TRACKING_ID_PREFIX.

2. Struct names and typedef's in camelcase: GtkWidget, TrackingOrder.
3. Functions that operate on structs: classic C style: gtk_widget_show(),

tracking_order_process().
4. Pointers: nothing fancy here: GtkWidget *foo, TrackingOrder *bar.
5. Global variables: just don't use global variables. They are evil.
6. Functions that are there, but shouldn't be called directly, or have obscure uses,

or whatever: one or more underscores at the beginning:
_refrobnicate_data_tables(), _destroy_cache().

For example, in Program #1 I have a ItemList struct. I have functions like
read_wheel_file(). And a constant like MAX_WHEEL_SIZE.

6

http://www.learn-c.org/
https://www.tutorialspoint.com/c_standard_library/index.htm
https://en.wikipedia.org/wiki/C_standard_library
http://stackoverflow.com/questions/1722112/what-are-the-most-common-naming-conventions-in-c

Pretend Objects
C isn’t object-oriented. At all. But we can pretend… well, sort of.

Let’s pretend to create an object (a “class” in Java) called Professor. A professor is a
struct. We’ll define the professor-related struct, a typedef name, and function definitions
in one header file: ​professor.h​.

#ifndef PROFESSOR_H

#define PROFESSOR_H

/* Part 1. Define the professor struct */

struct Professor {

char * name;

int dept_code;

struct College *employer;

};

typedef struct Professor *Professor; /* Part 2. a nicer name */

/* Part 3. extern the prof-related functions */

extern Professor *new_professor(char *nm, int code, struct

college *emp);

extern void grade_programs(Professor *p, ProgramList

*programs)

extern int get_tenure(Professor *p)

#endif

The ​#ifndef, #define and #endif statements​ are there to guard the header file. They
prevent the header file from being compiled more than once.

Part 1. The professor ​struct​ and its fields are defined here.

Part 2. A ​typedef​ makes it a little nicer to reference a professor as “Professor”, rather
than “struct professor”.

Part 3. The ​extern​ allows functions in other files to call your Professor functions.

7

Notice the big difference here between C and Java. This object setup is all optional in C.
In Java, it’s all part of the language.

Some K&R notes
I read K&R and took some supplemental notes. These things struck me as important.

Ch 1 Tutorial Intro
● C printf is like printf in Java
● Use #define for constants; #define MAX_LINE 100
● All function arguments are pass-by-value. You can use the “address of” operator

(&) to pass the address of a variable into a function. This is also called a “pointer
to” the variable. See swap() function example in Chapter 5!

● In C, char array (char []) or char pointer (char *) is used to represent a string. You
must allocate space for the string characters if using char *. Unlike JAva, these C
strings are mutable.

Ch 2 Types, Operator, Expressions
● Only 4 basic built-in types in C: char, int, float, double

Ch 3 Control Flow

Ch 4 Functions

Ch 5 Pointers and Arrays
● See swap() function for an excellent example of pointers and the address of

operator (&). Use & to effectively pass-by-reference.
● Pointers and arrays are very similar. char * is like char [].
● In C, you can define a pointer to a function. Cool. We won’t need this though.

Ch 6 Structures
● A struct defines related fields, like a class in Java. No methods though!

struct Person {
 char *name;
 int dept_code;
 double hourly_salary;
};

8

● Access a field for struct with dot (.): p.name. Access field for a struct pointer
using two-char arrow (->): p2->name. We usually deal with pointers to structs!

● structs can be self-referential, as in list nodes.
● typedef struct XXX XXX… to rename the struct and make code a little cleaner.

Ch 7 Input Output
● #include <stdio.h>... I always do this too: #include <stdlib.h>
● you can redirect stdin with < in command line. Redirect stdout with >.

○ program1 < test1.txt # test.txt is now stdin
○ program1 < test1.txt > test1_out.txt

● File access. Google fopen().
○ FILE *fp;
○ fp = fopen(“test.txt”, “r”);

● In Unix, programs return integers. exit(0) on success. exit(1), or any non-zero
value on error.

● Use malloc or calloc for memory allocation. See examples. On diff: calloc zeroes
out memory that has been allocated. Use free() to free up space.

○ int array1[100]; // static array
○ int *array2; // dynamic array
○ ip = (int *) calloc(100, sizeof(int));

Ch 8 Unix
We’re running on PC/Windows systems at school and won’t need this chapter.

9

D. My Program #1 stuff
I’m writing Program #1 too. I’ll add notes from my implementation here.
My advice to you: Start early. Stay late. Email me if you get stuck.
This is a challenging program in a new programming language. Also, C doesn’t have a
lot of modern conveniences that we may be user to. Beware! thanks… yow, bill

Fri Mar 30
Together, we identified 3 classes in P1:

● dll.c - doubly-linked list
● wheel.c - the wheel
● program1.c - the program, includes main()

What kinds of functions should be in these classes?

➔ dll.c - linked list operations like: create, add, get, copy, remove, print...
➔ wheel.c - operations like our command set: first, last, reverse, spin…
➔ program1.c - main(), command_loop(), others?

Example: What should your main() look like? Here’s some pseudocode.

/* functions in main.c */
main() {

print fancy program #1 greeting
create a new empty wheel
call command loop to read command, execute it
print fancy program #1 goodbye

}
command_loop() {

/* coming soon… */
}

thanks… yow, bill

Sat Mar 31
You’ll find “some help” in my common_area folder on the k: drive.

● some_help.[ch] - some I/O and string functions that are kind of nasty
● some_help_test.c - examples of how to call these functions

10

Copy my files if you want to use these functions. Some notes about this:
➔ Include them in your gcc command. Example: if you are working on program1.c:

$ gcc program1.c some_help.c

$ a

➔ Notice that you don’t include the test driver (some_help_test.c) in your gcc

command. It has a main() and this will cause your link step to fail. I wouldn’t even
bother copying the test driver… just peek at it to see how functions are called.

➔ Once compiled and linked, this will create an executable called a.exe, which is
the default. While your coding, a.exe is fine… and fast to type, too.

➔ Notice how all my functions use a prefix: sh_. I do this so I won’t conflict with
other function names. I do this throughout: dl_, wheel_, etc.

My process. After some puttering, I have decided to start my Wheel (wheel.c) later. I am
currently focusing on:

● program1.c - my main(), intro(), and then command loop (some help functions
are nice here)

● dl_list.c - my doubly-linked list; I have dl_list_test.c which has its own main(); I
add a function and then try calling it in my test driver

Once I’m satisfied that my program1 and dl_list basics work, then I’ll add the meat to the
sammich, wheel.c.

Changed my files to: my_list.c, my_list.h, and my_list_test.c. Much nicer.

❏ My MyList and Node structs are defined in my_list.c.
❏ I have a typedef in my_list.h to make MyList available; this also loses the struct in

front of everything.
typedef struct MyList MyList; /* lose the "struct" */

❏ With this, the first three functions in my header are:
extern MyList *ml_create();

extern void ml_delete(MyList *the_list);

extern MyList *ml_copy(MyList *the_list);

❏ Notice that I have to pass in a list to my functions. There’s no object.method() in
C. Also notice, I always use “MyList *”. This means “a pointer to MyList”. Without
it, my functions expect the struct itself. this is a major difference between Java
and C. In Java, everything is a pointer.

11

Mon Apr 2
I’ll elaborate on these two​ “extra topics”​ in class:

● I added a Makefile to my program1 folder. The make command simplifies your
tight loop: edit, compile, run.

○ Simple make example here:
stackoverflow.com/questions/21548464/how-to-write-a-makefile-to-compil
e-a-simple-c-program

○ My example is on the k: drive, common_area/program1.
● If it’s for you tough to get on campus, here are 2 online gcc environments. They

both have “issues”, but still…
○ www.c9.io​ - Cloud9 is great. You work in the cloud, but it’s command +

gcc and gdb, just like at school. The only issue: you need a credit card to
signup. It’s free; they just want to verify that you’re a real person.

○ https://www.onlinegdb.com/online_c_compiler​ - Thanks to Maia P for this
one. I haven’t used it much. It looks fine for trying small things.

○ Regardless of where you work or how you get it done: 1) get it done, and
2) ALWAYS run your program here at school before turning it in.

More on my process…

➢ Get my doubly-linked list working first: my_list.[ch]
➢ Then, get my command loop with one command going: program1.c. I think my

first command actually was help.
➢ Then I started in on my wheel functions: wheel[ch]. I did this one at a time.

Critical!​ It’s absolutely critical to code and test each small feature before you
move on.

➢ My first feature: create an empty wheel in program1 main(), add the size
command to the loop.

➢ Once your infrastructure is in place, just keep picking off commands one at a
time. Start with the simplest and work to the big ending: spin!

➢ I’m leaving my file commands for last.

C stuff that I’m using:

➔ To generate ​random ​things, you’ll use the C functions srand() and rand().
https://www.tutorialspoint.com/c_standard_library/c_function_rand.htm

➔ I include ​<stdio.h>​ and ​<stdlib.h>​ to get all the standard C library functions
➔ Use ​malloc()​ to allocate memory, like a Node or MyList. Use ​free() ​to delete.
➔ Some handy string functions (char * is a string) include ​strlen()​, ​strncmp()​,

strcpy()​.

12

https://stackoverflow.com/questions/21548464/how-to-write-a-makefile-to-compile-a-simple-c-program
https://stackoverflow.com/questions/21548464/how-to-write-a-makefile-to-compile-a-simple-c-program
http://www.c9.io/
https://www.onlinegdb.com/online_c_compiler
https://www.tutorialspoint.com/c_standard_library/c_function_rand.htm

➔ There’s some good file stuff in my some_help functions:​ fgets()​, ​scanf()​. But I
wrote some_help, so that you could avoid some of the tough patches.

➔ Java only has pointers. C has structs directly or pointers. In our app, we’ll always
use pointers, so variables will almost always have a “*” in them. For example, in
my_list.c:

Node *n;

my_list.c notes:

● the Node struct is defined in my_list.c. There’s no extern or anything in the
my_list.h header file because it’s only used internal to my_list.c

● copy item strings when they are added to the lists; use my some_help function
here.

● when you delete a list, you must free the memory associated with each Node!
● when you reverse your list… do it in place. No creating a whole new list and

adding tail-first. Efficiency!

Design - Your doubly-linked list should have ​no​ wheel references in it. This is just a
general-purpose linked list. The Wheel is just one of many potential users of this code.
In my P1, the Wheel has-a MyList. This means that MyList knows nothing about Wheel.

wheel.c notes:

● Wheel has-a MyList. That means that MyList is a member of the Wheel struct:
● Many of these functions are very thin… a line or two. They are mostly just calls to

a MyList function that does the heavy lifting.

Design - Your Wheel should have ​no​ references to program1 in it. A good test of this:
Could a gui use the wheel.c code you written, just as program1 uses it for a console
app?

13

Thu Apr 5
Last on my TODO list… files.

file write - ​aka save your wheel; use fopen() and fprintf(); here’s the setup:

char *file_name = “test.txt”;

FILE *fp = fopen(file_name, "w");

if(fp == NULL) {

 printf("Error: can't open file=%s", file_name);

}

else {

 fprintf(fp, "Hello, Bill\n");

 // more code...

 fclose(fp); // must close your file!

}

file read -​ aka read your wheel; use fopen() and my some help function; go:
#define MAX_LINE 256

char line[MAX_LINE];

char *file_name = “test.txt”;

FILE *fp = fopen(file_name, "r");

if(fp == NULL) {

 printf("Error: can't open file=%s", file_name);

}

else {

 int ret;

 ret = sh_get_line(line, MAX_LINE, fp);

 // if ret is 0, the EOF, else more code...

 fclose(fp); // must close your file!

}

14

