
Program #3 Helper
Prof Bill - May 2018

This is my helper for P3, Image Pal. thanks… yow, bill

Remember - test images link, wtkrieger.faculty.noctrl.edu/csc210-spring2018/images

Update - I have updated code in my program3 folder on the k: drive.

★ P3Helper - color distance and RGB methods
★ P3Palettes - predefined color palettes: web safe, xterm, NES, and grayscale

Roadmap
Follow my roadmap if you like.

Part 1 - GUI
Start your program. Get a simple GUI setup for you to add features.

1. Create Program3 project, no packages
2. Do GUI Hello, world (Program3 class?)
3. Create class for playing with images (TestImage class?)

a. read file
b. display in gui (fit into your space)
c. write file
d. show some basic image stats: num row, num columns, num pixels, etc
e. Some help from the official Oracle Javadocs:

i. docs.oracle.com/javase/8/javafx/api/javafx/scene/image/Image.html
ii. docs.oracle.com/javase/8/javafx/api/javafx/scene/image/ImageView

.html
4. I’m Professor-lazy, so I like the MenuBar in JavaFX. I used it in my P2. You can

see that code on the k: drive. Or there’s lots of examples on the internets.
a. My menus {and submenus} so far: Program2 {About, Exit}, File {Open

URL, Open, Save}, Palette {??? don’t know yet}, Color Cruncher {???}

Part 2 - Count colors
Count the number of colors in an image using 2 structures: ArrayList, HashMap.

1

http://wtkrieger.faculty.noctrl.edu/csc210-spring2018/images/
https://docs.oracle.com/javase/8/javafx/api/javafx/scene/image/Image.html
https://docs.oracle.com/javase/8/javafx/api/javafx/scene/image/ImageView.html
https://docs.oracle.com/javase/8/javafx/api/javafx/scene/image/ImageView.html

5. Palette210… class brainstorm = results. Huzzah! I’ve added our Palette210
interface to the k: drive. Copy these files to your folder. Use of this palette is not
mandatory, but it is highly recommended. Email me if you have questions.

a. Palette210 interface - methods you need to count colors in an image
b. Palette210Entry class - simple <key,value> object is <color,count> here;

it’s used in the Palette210 interface
6. ArrayPal - Code up ArrayPal is-a Palette210. Count colors using an array

(ArrayList). Add him to your GUI.
7. HashPal - Code up HashPal is-a Palette210. Count colors using a HashMap.

Add him to your GUI.
8. Timing - I time my color counters and print the results. I want to be able to

summarize this in a table at the end.

Part 3 - Crunch colors
The goal of color crunching is to reduce the number of colors in an image to 256 or less.
There’s a lot of trial and error here.

9. My ColorCruncher class has the following attributes:
a. The image
b. The HashPal created using this image
c. An array of Palette210Entry objects using the getEntryArray() method.

Each entry has a replacementColor attribute which I can be set to change
any color.

d. The crunched image
10.Matcher algorithm - My Matcher algorithm uses an existing palette (like web safe

colors) and replaces every color in my image to the closest color in the given
palette. This is a pretty easy process, and it gives nice results quickly.

11.Extractor algorithm - My Extractor algorithm is 2 steps: 1) try to extract a “nice”
color palette from the image, and then 2) run the Matcher using that palette.

Action Jackson says - Show me!
thanks… yow, bill

2

Research
Basic image links. Google on “javafx image png”

docs.oracle.com/javafx/2/api/javafx/scene/image/Image.html
docs.oracle.com/javase/8/javafx/api/javafx/scene/image/ImageView.html

Image coordinate system:

Source: ksuweb.kennesaw.edu/~bsetzer/2302sp15/nanoc/output/notes/0218-javafx/

Scratch the surface:

❖ Nice background article: Reducing PNG file Size,
medium.com/@duhroach/reducing-png-file-size-8473480d0476

❖ Wikipedia paage on reducing colors,

en.wikipedia.org/wiki/Help:How_to_reduce_colors_for_saving_a_JPEG_as_PNG

Some Code
I added two Java files that you can use (optional!). They’re a couple simple GUI I coded
up because it bugged me. The code is on my program3 folder on the k: drive.

● Dialog210 - a popup dialog box to display a message or ask the user for 1 piece
of information. It’s modeled after the old, useful Java Swing methods:
showMessageDialog and showInputDialog.

● TextArea210 - a text area with nice methods: println and clear.

There’s more info on the k: drive.

3

https://docs.oracle.com/javafx/2/api/javafx/scene/image/Image.html
https://docs.oracle.com/javase/8/javafx/api/javafx/scene/image/ImageView.html
http://ksuweb.kennesaw.edu/~bsetzer/2302sp15/nanoc/output/notes/0218-javafx/
https://medium.com/@duhroach/reducing-png-file-size-8473480d0476
https://en.wikipedia.org/wiki/Help:How_to_reduce_colors_for_saving_a_JPEG_as_PNG

Image File

/* I’m still playing with this, so it may change… */

It looks like two distinct cases for handling image files: 1) local and 2) URL.

Using local file name - Of course, use the JavaFX FileChooser. But you need to doctor
the file name that comes back so it works with the Image ctor.

imageFile = selectedFile.toURI().toURL().toString();

Source: Scroll to the bottom for the FileChooser and string doctoring example,
teamtreehouse.com/community/setting-selected-image-file-to-imageview-in-javafx

My snippet, image from local file:

File file = fc.showOpenDialog(null); // fc is my FileChooser

if (file != null) {

 try {

 String fileName = file.toURI().toURL().toString();

 System.out.println("File/Open: fileName=" + fileName);

 Image img = new Image(fileName);

 // put img in your ImageView or whatever

 } catch (MalformedURLException exc) {

 System.err.println(exc); // weak error message to console

 }

}

Using URL - If you do this, it fails:

Image img = new Image(someUrl);

It’s weird. It doesn’t fail because of the url string. It fails because it takes too long and
JavaFX freaks out. So, this works:

Image img = new Image(someUrl, false);

Setting that 2nd ctor parameter is called backgroundLoading… it “indicates whether the
image is being loaded in the background”.
Source: Image api, docs.oracle.com/javase/8/javafx/api/javafx/scene/image/Image.html
Source: URL help, bekwam.blogspot.com/2017/05/javafx-image-error-handling.html

My snippet, image from URL:
try {

 Image img2 = new Image(url, false);

4

https://teamtreehouse.com/community/setting-selected-image-file-to-imageview-in-javafx
https://docs.oracle.com/javase/8/javafx/api/javafx/scene/image/Image.html
http://bekwam.blogspot.com/2017/05/javafx-image-error-handling.html

 // ok to use img2 now

}

catch(Exception exc) {

 System.err.println(exc); // lame console error msg

}

Etc
It looks like you can use equals() on JavaFX Color objects.
stackoverflow.com/questions/15370174/how-does-javafx-compares-colors

When coding HashPal, use HashMap<Color, PaletteEntry210>.
Fortunately, Color has a hashCode() method defined already, so get() and put() will do
the right thing.
docs.oracle.com/javafx/2/api/javafx/scene/paint/Color.html#hashCode()

5

https://stackoverflow.com/questions/15370174/how-does-javafx-compares-colors
https://docs.oracle.com/javafx/2/api/javafx/scene/paint/Color.html#hashCode()

Fri May 4
It’s very important that you test and run your Pals (ArrayPal and HashPal) on small
images first. Get them working and then move on to the BIG boys.

Here are my results for two small test images:

For image wtkrieger.faculty.noctrl.edu/csc210-spring2018/images/solid_black.png

ArrayPal...

image size=40,000 pixels

palette size=1 colors

time to count colors=0.005 seconds

For image wtkrieger.faculty.noctrl.edu/csc210-spring2018/images/noctrl_xs.jpg

ArrayPal...

image size=480 pixels

palette size=471 colors

time to count colors=0.002 seconds

I’ll add my results for the BIG noctrl image later.

6

http://wtkrieger.faculty.noctrl.edu/csc210-spring2018/images/solid_black.png
http://wtkrieger.faculty.noctrl.edu/csc210-spring2018/images/noctrl_xs.jpg

Mon May 7
I want to reiterate something that’s critical on a program this challenging…

Always be green!
Always be running.

To succeed… work on one small thing at a time. Victory. Celebrate. Then next item.
Ask for help if you get stuck. Work on small images first.

Count colors debugging message - Boy, array counting is slow.
I put a debugging statement in my color counting loop, so I know it’s still working. It
prints a blurb every 10 rows. Like this:

PixelReader pr = this.img.getPixelReader();

for(int y = 0; y < this.img.getHeight(); y++) {

 if(verbose && (y % 10) == 0) {

 System.out.println("countColors() - row=" + y);

 }

 for (int x = 0; x < this.img.getWidth(); x++) {

 // count color at pixel (x, y)

 }

}

Time your algorithms - To time the execution time of a piece of code…

long startMillis = System.currentTimeMillis();

// do something

long endMillis = System.currentTimeMillis();

// total time in milliseconds is (endMillis - startMillis)

For nice printing of large ints (with commas), doubles (set precision), and percentages...
try NumberFormat, docs.oracle.com/javase/8/docs/api/java/text/NumberFormat.html

// regular formatter helps on integers and doubles

NumberFormat nf = NumberFormat.getInstance();

System.out.println(“my count = “ + nf.format(count));

// special formatter for percentages

NumberFormat npf = NumberFormat.getPercentInstance();

System.out.println(“my percent=” + npf.format(percent));

7

https://docs.oracle.com/javase/8/docs/api/java/text/NumberFormat.html

Crunching colors
OK - after counting colors (only after!), we’ll crunch the number of colors.
Here are some basics of my setup. Your mileage may vary.
My steps are:

1. Create a ColorCruncher class for my algorithm(s)
2. Turn my palette into an array of entries (Palette210Entry), so I can sort them and

process them.
3. Print some stats to 1) check that my setup works, and 2) get a feel for what my

image palettes look like.
4. Create a new image with color changes.

ColorCruncher class - I want all my crunching code in one place for now. I definitely
do not want it embedded in my GUI. I may end up adding more classes for more
algorithms, but for now, I have just one cruncher.

public class ColorCruncher {

 /** the image being crunched */

 private final Image img;

 /** the color palette of the image */

 private final Palette210 pal;

 /** array of color entries from the palette */

 private final Palette210Entry[] colorArray;

 // code here

}

Array of entries - In the cruncher I want to turn my palette into an array of entries, so
that I can play. Two steps:

1. Add method to our Palette210 interface, Palette210Entry[] getEntryArray()
2. Code method in my ArrayPal and HashPal classes.

a. ArrayPal is easy… ArrayList has a toArray() method
b. HashPal is a little tougher… lil help:
stackoverflow.com/questions/1090556/java-how-to-convert-hashmapstring-object-to-array

I created a Comparator to sort the array by count. Arrays.sort() is very handy.

docs.oracle.com/javase/8/docs/api/java/util/Arrays.html

Stats first - Do I start crunching colors like a madman. No way. I decided to look at my
array an print some stats. How many colors have a low count (like 1)? The top 256
colors… how many pixels in the image do represent? And so on...

8

https://stackoverflow.com/questions/1090556/java-how-to-convert-hashmapstring-object-to-array
https://docs.oracle.com/javase/8/docs/api/java/util/Arrays.html

Writable images - There’s probably many ways to change your pixels. Here’s one.
We know this…

A JavaFX Image has a PixelReader class we can use to view (and count) the
pixels in an image using its getColor() method.

Well, there’s an analogous setup for writing images as well.

A JavaFX WritableImage has a PixelWriter class we can use to change the
pixels in an image using its setColor() method.

Nice! Here’s the official Javadoc.

docs.oracle.com/javafx/2/api/javafx/scene/image/WritableImage.html
docs.oracle.com/javafx/2/api/javafx/scene/image/PixelWriter.html

My first attempt… change all my pixels to purple.

PixelWriter pw = wimg.getPixelWriter();

for(int y = 0; y < wimg.getHeight(); y++) {

 for(int x = 0; x < wimg.getWidth(); x++) {

 pw.setColor(x, y, Color.PURPLE);

 }

}

Set it in your GUI ImageView… purple!
If we can set all our pixels to purple, then maybe we set them to anything we like.
Tomorrow!

9

https://docs.oracle.com/javafx/2/api/javafx/scene/image/WritableImage.html
https://docs.oracle.com/javafx/2/api/javafx/scene/image/PixelWriter.html

Sat May 12
Matcher is a nice place to start when reducing colors. It uses an existing color list and
matches colors in the image to those in the list.

Here’s the pseudocode:

// change colors in image to use only those in the colorList

matcher(image, hashPal, colorList)

for each entry in Palette210 {

c = entry.color

c2 = findClosestColor(colorList, c)

entry.replacementColor = c2

}

use hashPal to replace colors in image

// return the closest color in the list to a given color

Color findClosestColor(colorList, c)

closestColor = null

closestDist = 0

for eachColor in colorList {

dist = color distance from eachColor to c

if closestColor == null OR dist < closestDist

closestColor = eachColor

closestDist = dist

}

return closest

● On all color crunching algorithms, use the HashPal to explore and find

replacement colors. Changing the colors in the actual image should be your last
step. Reason: The image is much BIGGER than the HashPal.

● I have 3 color distance methods in P3Helper class on the k: drive.
● I have 4 pre-mixed color palettes in my P3Palettes class on the k drive. The

palettes are: Web safe colors, xterm colors, Nintendo (NES) colors, and
grayscale colors.

● A nice Matcher quality: you can use < 256 colors if you want. In fact, I can run
Matcher with a grayscale palette with 2 colors (black and white). It’s cool.

10

I actually wrote my Extractor algorithm first. I played around and then noticed how easy
it would be to do Matcher, so I did it. Results for Extractor are just okay right now. But
it’s early.

➔ Top256 - My first attempt was to sort the entry array by count and use the 256
most used colors. This wasn’t very good. Often, images have thousands of
different colors, many very close to each other. So, the top 256 usually gave
mediocre results.

➔ Top256plusplus - Better! I am trying to pick smarter Top 256 colors. I still use the
sorted array, but I only adding colors that are not “too close” to those already in
my Top 256 list. Better, but I’m still playing.

➔ Now that I pulled Matcher out, my Extactor algorithms have a nice, common
structure:

colorList extractedColors = Extractor()

run Matcher(image, hashPal, extractedColors)

Matcher is a nice first algorithm to try. It’s pretty easy and you can use it with other
things that create color lists later (like my Extractor).

Hope this helps. Please email me any questions.
Have a great weekend.
thanks… yow, bill

11

