Program #4 Helper

Prof Bill - May 2018
This is my helper for P4, Rect210. thanks... yow, bill

TODO List
P4 isn’t really difficult, but it has a lot of moving pieces. Therefore, it’s critical to stay

organized. Step #1 - keep a TODO list. Here’s mine.

1. Foundational work - getting basic rect and rect factory working
a. Copy P4 classes from k: drive
b. Create MyRect is-a Rect210 and MyRectFactory is-a Rect210Factory.
c. Code em up; try them out in a tiny test bed

2. P4Generate - create console program to generate random rects
a. Setup class and main()
b. Add read/write rect file to RectlO class
c. Create rects with factory and write to file
d. Add user queries for all the random rect parameters

3. Pdintersect - create console program to find rect intersections
a. Setup class and main()

Brute force

Sweep algo

Call algos in main() and time their execution

Write Rectlntersect files

© Q0T

4. Program4 GUI -
a. Hello, World
b. VBOX + initButtons() + initRects() + scene show = GO!
c. Connect to Sweep guru to do step-by-step algo

See? There are a lot of steps. But none of them are earth-shattering.
More help(er) coming soon. Email me!
thanks... yow, bill

Following my TODO list...

Step 1 - Foundation work

Getting basic rects up and running... my classes are:
> MyRect is-a Rect210
> MyRectFactory is-a Rect210Factory
> Get a main() up so you can create rects and print them.

In MyRect, the intersects() method is a toughie. How can we tell if two rects intersect?
| like this approach:
www.hackerearth.com/practice/notes/how-to-check-if-two-rectangles-intersect-or-not/

New, May 25 => My brute force and sweep line results are now identical. (huzzah!)
How? Change your intersects() method, so that rects that share a border do not
intersect. This means that intersection is borders crossing, not just adjacent. This gets
rid of the problem where sweep line events with the same x coordinate sometimes
under-count rect intersections. (huzzah again!)

Step 2 - P4Generate

Generate a file of random rects
-> My main() class is P4Generate
- | created a class call RectlO to read and write rect files
-> | added some code to query the user, P4Helper.java

This is meatball code, with nothing really difficult here.

New May 24 => | have filled in the code for RectlO to use our Rect factory. | did this to
help you and also to show you how cool factories are.

Step 3 - P4intersect

Determine rect intersections and write them to a file.
Run brute force, save.
Run Sweep line, save.

https://www.hackerearth.com/practice/notes/how-to-check-if-two-rectangles-intersect-or-not/

New, May 25 => | have rect test files and results for you on the k: drive. Start with the
README_RESULTS pdf in that folder. Email me with any questions.
K:\18SP\CSC_210_1\common_area\program4\files_and_results

Step 4 - Program4 gui

Two recommendations:
e Keep your start() method small and organized. Break your gui up into sensible
methods: initButtons(), initRectPane(), etc.
e | recommend a very simple MVC (Model View Controller) approach. Assign each
button to a method in your gui: do_start(), doStep(), etc.
| used a JavaFX Pane to draw my Rectangles.

Here’s mine. Optional! Yours may differ.

[] [] P4 - Rectangles!

Sweep Line Algorithm

From our Princeton notes...

Sweep line algorithm pseudo code:
// Sweep Line algorithm for determining rect intersections
sweeplLine(rectList)
sweeplist = new rect list (empty)
intersectList = new rect intersect list (empty)
pq = new PriorityQueue() // use JFC; it's a heap
initPQ(rectList)

// init priority queue for sweep line
initPQ(rectList)
for each rect r: rectList {
SweepEvent swe = create entry event for r.x // upper left x
pg.add(swe)
swe = create exit event for r.xMax // lower right x
pg.add(swe)

b

// removeMin() returns the next sweep event (rect) to process
SweepEvent removeMin()
if pg.isEmpty() the return null // no events, so sweep is done

swe = pq.poll()
if swe is entry
sweeplist.add(swe.rect) // add this rect to sweep
else // exit event
sweeplist.remove(swe.rect) // rm this rect from sweep
for rect r: sweeplList { // upon exit, check for intersections
if swe.rect intersects r
intersectList.add(swe.rect, r)

Notes:
% In GUI, each step is a call to removeMin()
% In p4intersect, just call put removeMin() in a loop until entry
% sweeplList is an ArrayList of rects currently being swept; in Princeton algorithm
it's a (fancy) intersect BST; we’ll talk.

P4 Classes

We have lots going on and lots of classes. Here’s a snapshot of all of them.

Shared code

Grab this shared code from the k: drive...
% P4Helper - query methods | used on P4Generate
% Rect210 - our rect interface
% Rect210Factory - our rect factory interface
% RectIntersect - simple rect intersect class: r1 and r2
% RectlO - read and write rect files; write rect intersect file; factory =cool!

My classes

Soon to be coded by you...

Foundation
> MyRect is-a Rect210 - intersects() is the toughie; see my notes
> MyRectFactory is-a Rect210Factory

Programs
> P4Generate - generate program main(); it's small
> P4lIntersect - intersect program main(); it's small
> Program4 - P4 GUI; not small (ha); plug in SweepLineGuru

Intersect Algorithms
> BruteForceAlgorithm - run brute force on a list of rects, return list of rect
intersects
> SweepLineGuru - sweep line algorithm; can be run step-by-step (removeMin
method) or all in one (run method)
> SweepEvent - holds rect events during sweep algorithm; these are placed on the
PQ

thanks... yow, bill

PS - | used Netbeans (run/generate javadoc) to create Javadoc pages for my solution.
They’re here: wtkrieger.faculty.noctrl.edu/csc210-spring2018/p4/javadoc/.

http://wtkrieger.faculty.noctrl.edu/csc210-spring2018/p4/javadoc/

