
Red Black Tree insertion
Some pseudocode:

insert(K key)

n = create red node(key)

if empty tree

root = n

change n color to black

else

do BST insert of n as leaf

if parent of n is red

// new node and its parent are both red = must fix this!

if uncle of n is red, then ​recolor

else ​rotate

Recoloring
In the figure below… a new node (K) is added. It’s parent (P) is red causing a red-red
violation. If the uncle (S) is red, then recolor in two steps:

1. Make the grandparent (G) red, and
2. Color its children (P and S) black.

This resolves the red-red conflict AND maintains equal black-height.

Important - making the red grandparent (G) may cause a conflict above us. Apply the
same recursively to grandparent (G).

Rotation
If the new node’s uncle is a black node, then rotation is required.
There are 4 rotations cases (similar to AVL). They’re on the next back (the back).
Source: ​pages.cs.wisc.edu/~paton/readings/Red-Black-Trees/

1

http://pages.cs.wisc.edu/~paton/readings/Red-Black-Trees/

4 Rotation cases​ - when new node (K) has a red parent (P) and a black uncle (S).
Case 1: Left-Left (P is parent, K is new (Key) node)

Case 2: Left-Right

Case 3: Right-Right

Case 4: Right-Left

2

