
Week 3 Notes
Prof Bill - Apr 2018

Java Collections Framework = JCF

Week 3 notes covering:

A. JCF, part 1: intro, lists

B. JavaFX

C. JCF, part 2: Sets, Maps, Collections, Stream

D. Hash tables (in a separate doc)

thanks… yow, bill

1

A. JCF: Intro, Lists
** Book: Muganda Ch 19.1-19.2

19.1 Intro
Java Collections Framework = JCF
collection: object that contain other objects
3 types of collections: list, set, map

● list - ordered collection
● set - unordered, no duplicates
● map - key-value pairs, quick retrieval by key

JCF is generic, so Collection<T>
JCF is part of the util package in Java. This Javadoc is invaluable when coding!
docs.oracle.com/javase/10/docs/api/index.html?java/util/package-summary.html

UML for class hierarchy - part 1: Collection interface, List and Set
Source: dzone.com/articles/an-introduction-to-the-java-collections-framework

Collection interface methods:

add(Object), addAll(Collection), clear(),
contains(Object), containsAll(Collection), isEmpty(),

2

https://docs.oracle.com/javase/10/docs/api/index.html?java/util/package-summary.html
https://dzone.com/articles/an-introduction-to-the-java-collections-framework

remove(Object), removeAll(Collection), size(), stream(), toArray()
Part 2 is Map, which has a radically different set methods; little overlap with Collection,
so Map has its own interface:

Iterator for detailed control over looping
More common, foreach loop (built by Java using Iterator)

for(String name: nameList) {

 // do something here to each name in the list

}

Or of you prefer, Java functional interface to do similar things:

nameList.forEach(

 x ->

 {

 System.out.println(“%s %d\n”, x, x.length);

 });

19.2 Lists
Two Lists: ArrayList, LinkedList
List interface methods: 1) inherits all Collection methods, and 2) and these:

add(int pos), addAll(Collection), get(i), indexOf(Object), remove(int pos),
sort(Comparator)

ArrayList, LinkedList is-a List; can use the super class in declaration (polymorphism)
List<String> nameList = new ArrayList<>();

ListIterator methods give detailed control over iteration of List

3

B. JavaFX
** Book: Muganda Ch 15

My JavaFX notes zoom by. The concepts here aren’t the challenge. Gui coding is very
hands-on, trial and error. Get in there, google it, try it, rinse and repeat.
thanks… yow, bill

15.1 Intro
JavaFX = Java gui library, newer and more popular (?) than Swing
Couple links:

● Javadoc for the API online,
docs.oracle.com/javase/10/docs/api/index.html?javafx.graphics-summary.html

● Tutorials:

○ Loos nice, www.tutorialspoint.com/javafx/index.htm
○ The official tutorial (so it must be bad?),

docs.oracle.com/javafx/2/get_started/jfxpub-get_started.htm -
○ google “javafx tutorial” to find something better!

● Hello, World, docs.oracle.com/javafx/2/get_started/hello_world.htm

event-driven gui - write event listener code, methods are called when specific user
actions take place

/* if you’re totally new to gui… you may want to read/skim Muganda Ch 12 and 13 */

15.2 Stages and Scenes
the metaphor... an application is a scene played out on a stage

4

https://docs.oracle.com/javase/10/docs/api/index.html?javafx.graphics-summary.html
https://www.tutorialspoint.com/javafx/index.htm
https://docs.oracle.com/javafx/2/get_started/jfxpub-get_started.htm
https://docs.oracle.com/javafx/2/get_started/hello_world.htm

Muganda Code Listing 15-1 - great example of the simplest JavaFX application:

import javafx.application.Application;

import javafx.stage.Stage;

public class SimpleJavaFXApp extends Application {

 public static void main(String[] args) {

 launch(args);

 }

 @Override

 public void start(Stage stage) {

 stage.setTitle("Simple JavaFX Application");

 stage.show();

 }

}

15.3 Scene Graph and Nodes
Organization:

● “A GUI consists of a scene graph, which is itself comprised of scene graph
nodes”

● “A scene is always formed from a single node called the root of the scene”

15.4 Panes and Component Layout
VBox and HBox - nice, simple panes; very useful!

15.5 Events and Event Handling
Important classed: EventHandler, ActionEvent
4 choices for event handlers:

➢ Separate class, Muganda Code Listing 15-5
➢ Inner class, Muganda Code Listing 15-7
➢ Anonymous class
➢ Lambda functions, Muganda Code Listing 15-8

/* style choice is yours, whatever you prefer; lambda functions are usually preferred
(aka cooler) over anonymous classes */

15.6 Determining the Target of an Event
Use getTarget() method in your listener

5

15.7 Radio Buttons and CheckBoxes
radio buttons - choose from multiple items, RadioButton class
checkboxes - yes/no choice, CheckBox class
Use ToggleGroup class to group choices for radio button

15.8 Displaying Images
Use Image class
See Muganda Code Listing 15-11

15.9 Timeline Animation
Timeline class for simple frame-by-frame animation.
Muganda Code Listing 15-12 for super-simple example

15.10 Text Input Control, Panes, CSS
TextInputControl abstract class defines text input methods
CSS = Cascade Style Sheet, critical component in formatting web pages
Panes for fancy placement - TilePane, BorderPane, GridPane

6

C. JCF: Sets, Maps, etc
** Book: Muganda Ch 19.3-19.6

19.3 Sets
sets are unordered collections with no duplicates
Java says:

A Set is a Collection that cannot contain duplicate elements. It models the mathematical
set abstraction. The Set interface contains only methods inherited from Collection and
adds the restriction that duplicate elements are prohibited.

- docs.oracle.com/javase/tutorial/collections/interfaces/set.html

Different implementations of Set:

● HashSet - is-a Set, implements Set with a hash table, uses hashcode() method,
inherited from Object

● LinkedHashSet - it’s HashSet with a linked list added to preserve order (meh)
● TreeSet - implements Set with a binary tree

SortedSet - not an implementation, an interface for sorting elements in a Set, example:
TreeSet is-a SortedSet.

Comparable vs. Comparator
This is important - 2 ways to compare objects (for sorting, searching, everything!):

➢ compareTo() method, inherited from Comparable interface
➢ Comparator interface

This is a nice example to walk through… Player class, 1) order by rank using
Comparable, and 2) order by rank or age using Comparable.

www.baeldung.com/java-comparator-comparable

7

https://docs.oracle.com/javase/tutorial/collections/interfaces/set.html
http://www.baeldung.com/java-comparator-comparable

Source: www.javatpoint.com/difference-between-comparable-and-comparator

/* HW #3 grudge match: Comparable vs. Comparator! */

19.4 Maps
maps store (key, value) pairs; each key has one value; key -> value access is fast
Java says:

A Map is an object that maps keys to values. A map cannot contain duplicate keys: Each
key can map to at most one value.
The Java platform contains three general-purpose Map implementations: HashMap,
TreeMap, and LinkedHashMap. Their behavior and performance are precisely
analogous to HashSet, TreeSet, and LinkedHashSet, as described in The Set Interface
section.

- docs.oracle.com/javase/tutorial/collections/interfaces/map.html

Catch that? Implementations are similar to Set.
They’re HashMap, TreeMap, and LinkedHashMap. SortedMap interface, too.

Some new methods in Map (types are K=key, V=value):

V get(K) - get value for this key
put(K, V) - put (key, value) in map
V remove(K) - remove (key, value) from map
Set<K> keySet() - create set of all keys in map
Collection<V> values() - create collection of all values in map
And… containsKey(K), containsValue(V), clear(), isEmpty()

8

https://www.javatpoint.com/difference-between-comparable-and-comparator
https://docs.oracle.com/javase/tutorial/collections/interfaces/map.html

19.5 Collections
These are some very useful static methods for Collection objects!
docs.oracle.com/javase/10/docs/api/index.html?java/util/Collections.html

Most popular methods are:

● binarySearch() - with Comparable or Comparator
● sort() - with Comparable or Comparator
● max(), min() - with Comparable or Comparator

● copy()
● reverse() - reverse the order of elements
● shuffle() - randomize!

19.6 Stream
Coming soon…

9

https://docs.oracle.com/javase/10/docs/api/index.html?java/util/Collections.html

