
Week 4 Notes 
Prof Bill - Apr 2018 
 
Week 4 notes covering: 
 

A. Recursion 
 

B. Sort and search algorithms 
 

C. Algorithm analysis, Big-O 
 
thanks… yow, bill 
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A. Recursion 
** Book: Muganda Ch 16 
 

16.1 Intro  
Java definition - a recursive method that calls itself 
recursive data structure - self-referential data structures (like linked lists or trees); 
these structures can often be intuitively accessed with recursive code 
 
More generally - Recursion occurs when a thing is defined in terms of itself or of its 
type, en.wikipedia.org/wiki/Recursion  
 
“Tree (to the right) created using the Logo programming language 
and relying heavily on recursion. Each branch can be seen as a 
smaller version of a tree.” 
- en.wikipedia.org/wiki/Recursion_(computer_science)  
 
We find recursion in mathematics and nature: 

● Fractals are recursive objects, en.wikipedia.org/wiki/Fractal 
● There’s lots of recursion in nature… this is an interesting 

overview, www.nilsdougan.com/?page=writings/onfractals 
● The most famous fractal is the Mandelbrot set, 

en.wikipedia.org/wiki/Mandelbrot_set  
● In maths, recurrence relations are recursive equations, 

en.wikipedia.org/wiki/Recurrence_relation  
 

16.2 Solving Problems  
Recursive solution has two parts: 

➢ base case: fixed value, end of the recursion 
➢ recursive case: problem/function defined in terms of itself 

So, solution steps: 1) identify base case (end of recursion), and recursive case (making 
problem successively smaller). Recursion must get smaller or it blows up. 
 
Factorial example: 

0! = 1    // base case 

n! = n * (n-1)!    // recursive case 
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Other examples (Muganda Ch 16 challenges: 

● Recursive multiplication: n*m = n + (n*(m-1)) 
● Recursive power: x^y = x * x^(y-1) 

 

16.3 Examples  
Recursive sum: value0 + sum(value1...valueN)   // base case? recursive case? 
Fibonacci: again, base case? recursive case? 

F0 = 0 

F1 = 1 

F(N) = F(N-1) + F(N-2) 

 

16.4 Recursive Binary Search  
BTW - binary search is O(log n). 
Pseudocode: 

// array must be sorted! 

int binarySearch( array, value, first, last) 

    if last < first 

        return not found 

    mid := (first + last) / 2 

    if a[mid] = value 

        return mid 

    if value < a[mid] 

        return binarySearch(a, value, first, mid-1) 

    else 

        return binarySearch(a, value, mid+1, last) 

 

16.5 Towers of Hanoi 
Yup. 
 

Extra - Prof Bill 
Recursion vs. iteration. 

● Recursion often provides a more logical, elegant solution 
● Iteration is faster! (see Homework #4) 

 
Why is recursion so much more expensive than iteration (220 students)? 
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tail recursion: when the recursive function call(s) is at the end 
Tail recursion is important because 1) it’s pretty common, and 2) it’s usually easy to 
convert tail recursion to iteration. Motivation: iteration is faster than recursion! 
Fibonacci is a good example of this.  
Binary search too, www.codecodex.com/wiki/Binary_search#Pseudocode  
 

function binarySearch(a, value, left, right) 

    while left ≤ right 

        mid := floor((right-left)/2)+left 

        if a[mid] = value 

            return mid 

        if value < a[mid] 

            right := mid-1 

        else 

            left  := mid+1 

    return not found 

 
thanks… yow, bill 
 
PS - Next lecture, class field trip… we all get Mandelbrot set tattoos, 
www.askideas.com/10-mandelbrot-tattoo-designs/  
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B. Sort and Search 
** Book: Muganda Ch 17.1-17.2 
 

17.1 Sorting Algorithms 
Sorting: 

➔ Bubble sort - lots of swaps 
➔ Selection sort - one swap per pass 
➔ Insertion sort - insert each item into position, swap to move others down 

 
Here’s a great way to watch the difference between these (pretty similar) sorting 
algorithms… our favorite animation/visualization site! 

www.cs.usfca.edu/~galles/visualization/ComparisonSort.html  
 
The structure of these (similar, again) algorithms is a nested for loop: 

for( each element in the array) 

    for( every other element in the array or so) 

        do work: compare, swap, etc 

 
Use Comparable to sort Objects. 
 
As such, these sorting approaches are all O(n2). (yuk) 
Question: How much slower is sorting for N1=10,000 versus N2=100? 
 
Quicksort is the $$$; average performance is O(N log N). 
Question: How much slower is Quicksort on N1=10,000 versus N2=100? 
 
Partition, pivot - Quicksort places pivot in spot so that all values below pivot in the 
array are <= the pivot value, and all values above are > pivot value. 
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Source: faculty.ycp.edu/~dhovemey/fall2005/cs102/lecture/11-1-2005.html  

 
 
I like the example and the pseudocode here: www.geeksforgeeks.org/quick-sort/  
 
1) Quicksort pseudocode  

// recursive quicksort algorithm 

quickSort(arr[], low, high) 

    if (low < high) 

        // pi is partitioning index, arr[p] is now correct 

        pi = partition(arr, low, high); 

 

        quickSort(arr, low, pi - 1);  // Before pi 

        quickSort(arr, pi + 1, high); // After pi 

 

 

// swap within array range so everything below pivot is <= and above is > 

// pivot index is returned 

int partition (arr[], low, high) 

    pivot = arr[high];    // pivot, last item 

    i = (low - 1)    // index of smaller element 

 

    for (j = low; j <= high- 1; j++) 

        if (arr[j] <= pivot)    // if current is <= pivot 

        i++; 

        swap arr[i] and arr[j] 

 

    swap arr[i + 1] and arr[high]) 

    return (i + 1) 
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2) Quicksort example 

 
 
One problem with Quicksort. It’s not stable. A stable sort is one where two equal 
objects are left in the same order in sorted output as they appear in the input array. 
www.geeksforgeeks.org/stability-in-sorting-algorithms/  
 

17.2 Search Algorithms 
Search this: 

➔ Sequential search - O(N) 
➔ Binary search - O( log N) 

 
Binary search 

❏ Array must already be sorted! 
❏ Divide problem size in half with each iteration, hence the O(log N) 

 
Pseudocode (source: www.codecodex.com/wiki/Binary_search): 

// recursive binary search, returns item if found 

binarySearch(a, value, left, right) 

    if right < left, then return not found 

    mid = (right + left)/2  

    if a[mid] == value 

        return mid 

    if value < a[mid]   // smaller value means search left 

        return binarySearch(a, value, left, mid-1) 

    else   // larger value means search right 

        return binarySearch(a, value, mid+1, right) 
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Since binary search is tail recursion, we can (pretty easily) make it iterative. 
 

// iterative binary search 

binarySearch(a, value, left, right) 

    while left ≤ right 

        mid = (right + left)/2 

        if a[mid] == value 

            return mid 

        if value < a[mid]   // smaller value means search left 

            right := mid-1 

        else    // larger value means search right 

            left  := mid+1 

    return not found 
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C. Algorithm Analysis, Big-O 
** Book: Muganda Ch 17.3 
 

17.3 Algorithm Analysis 
Big-O! 

We can estimate the efficiency of an algorithm... 
 
Our analysis is different than benchmarking, which involves running your algorithm and 
measuring it. Disadvantages to benchmarking... measurements will be impacted by 
many “real world” factors, including: 

❖ Programming language and compiler choices 
❖ Computer and operating system you’re using 
❖ Load factor on your system while running 
❖ Input values used during testing 

 
Another disadvantage to benchmarking… Coding! Coding is work, and an algorithm 
must be implemented in code to benchmark it. 
 
But look at the glass half full… without even coding up our algorithm, analysis gives us 
a measurement that is independent of any sticky issues like what computer you use or 
what data you run. This is powerful! 
 
Algorithm analysis provides for a theoretical bounds for the performance of an 
algorithm in relation to the size of its inputs. 
Here’s a fancier way of saying this:  

the analysis of algorithms is the determination of the computational complexity of 
algorithms, that is the amount of time, storage and/or other resources necessary 
to execute them. Usually, this involves determining a function that relates the 
length of an algorithm's input to the number of steps it takes (its time complexity) 
or the number of storage locations it uses (its space complexity). 

- en.wikipedia.org/wiki/Analysis_of_algorithms  
 
Worst case complexity vs. average case complexity - which is more important? 
It depends. How common is the “worst case”. We see that hash table are O(N) in the 
worst case, but we take all measures (good hash function, resizing) to avoid worst case. 
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Try to categorize asymptotic performance of our algorithm with Big-O. 
We say the complexity of an algorithm f(n) is 

O(g(n) if f(n) <= c*g(n), for n>n
0
 

 
Maybe this is better. 

 
Source: UW-Stout, http://slideplayer.com/slide/8348651/  

 
Big-O is an upper bound of our algorithm’s performance! This is important, so that we 
can answer the question… performance will never be worse than this g(n). 
 
Muganda: Another way... f(n)/g(n) becomes small or disappears as N gets large 
 
Morin: “Big-oh notation allows us to reason at a much higher level” (yes!) 
 
 

 
 
  

10 

http://slideplayer.com/slide/8348651/


We can remove constants and multiples from our f(n) when categorizing using Big-O. 
These factors are insignificant when N is large. 

● 32n2 = O(n2) 
● n2 + n 170 = O(n2) 

 

 
Source: meherchilakalapudi.wordpress.com/category/data-structures-1asymptotic-analysis/  

 
 
Big-O rate of growth functions, in order: 

➢ O(1) = constant time; example is hash table get/put 
➢ O( log N) = logarithmic time; example is binary search 
➢ O(N) = linear time; example is sequential search 
➢ O(N log N) = “n log n time” or linearithmic; example is Heapsort 
➢ O(n2) = quadratic time; example is bubble sort 
➢ O(n3), O(n4), etc = polynomial time; example is triple loop 
➢ O(2N) = exponential time; example is recursive Fibonacci 
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Always remember - our “most important chart of 210”... huzzah! 

 
Source:www.hackerearth.com/practice/notes/big-o-cheatsheet-series-data-structures-and-algorithms-with

-thier-complexities-1/  
 
For all the hand-waving, Big-O essentially tries to fit an algorithm into one of these 
complexity buckets, from constant time to exponential. If we can do this, then we have a 
good upper bound and good, quick description of the performance of our algorithm. 
This is very valuable. 
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Big-O functions at various values for N. 

 
Source: www.cpp.edu/~ftang/courses/CS240/lectures/img/alg-tab.jpg  

 
This is fun too: bigocheatsheet.com/  

Extras 
These are other “Big” functions that are less important to us. 

➔ Big Omega, Ω(f(n)) - defines the lower bound of performance for an algorithm 
 

➔ Big Theta, Θ(n) - provides a tighter (upper and lower) bound for the performance 
of an algorithm 

You can read more here: www.khanacademy.org/computing/computer-science/ 
algorithms/asymptotic-notation/a/asymptotic-notation  
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Finally…  
Big-O is a part of one of the most significant unsolved problems in math/computer 
science today. It’s known as the P vs. NP Problem. If you can publish a solution, these 
guys will give you a million bucks. 

www.claymath.org/millennium-problems/p-vs-np-problem  
 

In fact, one of the outstanding problems in computer science is determining 
whether questions exist whose answer can be quickly checked, but which require 
an impossibly long time to solve by any direct procedure. Problems like the one 
listed above certainly seem to be of this kind, but so far no one has managed to 
prove that any of them really are so hard as they appear, i.e., that there really is 
no feasible way to generate an answer with the help of a computer. Stephen 
Cook and Leonid Levin formulated the P (i.e., easy to find) versus NP (i.e., easy 
to check) problem independently in 1971. 

 
P problems are those where solutions are easily found (polynomial time, hence the “P”). 
NP problems are those that are easy to verify (in polynomial time), but hard to solve. 
A large set of problems are called NP-complete as they can be easily verified, but no 
one has proven that they are hard to solve yet. 
 

 
www.claymath.org  
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