
Week 4 Notes
Prof Bill - Apr 2018

Week 4 notes covering:

A. Recursion

B. Sort and search algorithms

C. Algorithm analysis, Big-O

thanks… yow, bill

1

A. Recursion
** Book: Muganda Ch 16

16.1 Intro
Java definition - a recursive method that calls itself
recursive data structure - self-referential data structures (like linked lists or trees);
these structures can often be intuitively accessed with recursive code

More generally - Recursion occurs when a thing is defined in terms of itself or of its
type, en.wikipedia.org/wiki/Recursion

“Tree (to the right) created using the Logo programming language
and relying heavily on recursion. Each branch can be seen as a
smaller version of a tree.”
- en.wikipedia.org/wiki/Recursion_(computer_science)

We find recursion in mathematics and nature:

● Fractals are recursive objects, en.wikipedia.org/wiki/Fractal
● There’s lots of recursion in nature… this is an interesting

overview, www.nilsdougan.com/?page=writings/onfractals
● The most famous fractal is the Mandelbrot set,

en.wikipedia.org/wiki/Mandelbrot_set
● In maths, recurrence relations are recursive equations,

en.wikipedia.org/wiki/Recurrence_relation

16.2 Solving Problems
Recursive solution has two parts:

➢ base case: fixed value, end of the recursion
➢ recursive case: problem/function defined in terms of itself

So, solution steps: 1) identify base case (end of recursion), and recursive case (making
problem successively smaller). Recursion must get smaller or it blows up.

Factorial example:

0! = 1 // base case

n! = n * (n-1)! // recursive case

2

https://en.wikipedia.org/wiki/Recursion
https://en.wikipedia.org/wiki/Recursion_(computer_science)
https://en.wikipedia.org/wiki/Fractal
http://www.nilsdougan.com/?page=writings/onfractals
https://en.wikipedia.org/wiki/Mandelbrot_set
https://en.wikipedia.org/wiki/Recurrence_relation

Other examples (Muganda Ch 16 challenges:

● Recursive multiplication: n*m = n + (n*(m-1))
● Recursive power: x^y = x * x^(y-1)

16.3 Examples
Recursive sum: value0 + sum(value1...valueN) // base case? recursive case?
Fibonacci: again, base case? recursive case?

F0 = 0

F1 = 1

F(N) = F(N-1) + F(N-2)

16.4 Recursive Binary Search
BTW - binary search is O(log n).
Pseudocode:

// array must be sorted!

int binarySearch(array, value, first, last)

 if last < first

 return not found

 mid := (first + last) / 2

 if a[mid] = value

 return mid

 if value < a[mid]

 return binarySearch(a, value, first, mid-1)

 else

 return binarySearch(a, value, mid+1, last)

16.5 Towers of Hanoi
Yup.

Extra - Prof Bill
Recursion vs. iteration.

● Recursion often provides a more logical, elegant solution
● Iteration is faster! (see Homework #4)

Why is recursion so much more expensive than iteration (220 students)?

3

tail recursion: when the recursive function call(s) is at the end
Tail recursion is important because 1) it’s pretty common, and 2) it’s usually easy to
convert tail recursion to iteration. Motivation: iteration is faster than recursion!
Fibonacci is a good example of this.
Binary search too, www.codecodex.com/wiki/Binary_search#Pseudocode

function binarySearch(a, value, left, right)

 while left ≤ right

 mid := floor((right-left)/2)+left

 if a[mid] = value

 return mid

 if value < a[mid]

 right := mid-1

 else

 left := mid+1

 return not found

thanks… yow, bill

PS - Next lecture, class field trip… we all get Mandelbrot set tattoos,
www.askideas.com/10-mandelbrot-tattoo-designs/

4

http://www.codecodex.com/wiki/Binary_search#Pseudocode
https://www.askideas.com/10-mandelbrot-tattoo-designs/

B. Sort and Search
** Book: Muganda Ch 17.1-17.2

17.1 Sorting Algorithms
Sorting:

➔ Bubble sort - lots of swaps
➔ Selection sort - one swap per pass
➔ Insertion sort - insert each item into position, swap to move others down

Here’s a great way to watch the difference between these (pretty similar) sorting
algorithms… our favorite animation/visualization site!

www.cs.usfca.edu/~galles/visualization/ComparisonSort.html

The structure of these (similar, again) algorithms is a nested for loop:

for(each element in the array)

 for(every other element in the array or so)

 do work: compare, swap, etc

Use Comparable to sort Objects.

As such, these sorting approaches are all O(n2). (yuk)
Question: How much slower is sorting for N1=10,000 versus N2=100?

Quicksort is the $$$; average performance is O(N log N).
Question: How much slower is Quicksort on N1=10,000 versus N2=100?

Partition, pivot - Quicksort places pivot in spot so that all values below pivot in the
array are <= the pivot value, and all values above are > pivot value.

5

https://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html

Source: faculty.ycp.edu/~dhovemey/fall2005/cs102/lecture/11-1-2005.html

I like the example and the pseudocode here: www.geeksforgeeks.org/quick-sort/

1) Quicksort pseudocode

// recursive quicksort algorithm

quickSort(arr[], low, high)

 if (low < high)

 // pi is partitioning index, arr[p] is now correct

 pi = partition(arr, low, high);

 quickSort(arr, low, pi - 1); // Before pi

 quickSort(arr, pi + 1, high); // After pi

// swap within array range so everything below pivot is <= and above is >

// pivot index is returned

int partition (arr[], low, high)

 pivot = arr[high]; // pivot, last item

 i = (low - 1) // index of smaller element

 for (j = low; j <= high- 1; j++)

 if (arr[j] <= pivot) // if current is <= pivot

 i++;

 swap arr[i] and arr[j]

 swap arr[i + 1] and arr[high])

 return (i + 1)

6

http://faculty.ycp.edu/~dhovemey/fall2005/cs102/lecture/11-1-2005.html
https://www.geeksforgeeks.org/quick-sort/

2) Quicksort example

One problem with Quicksort. It’s not stable. A stable sort is one where two equal
objects are left in the same order in sorted output as they appear in the input array.
www.geeksforgeeks.org/stability-in-sorting-algorithms/

17.2 Search Algorithms
Search this:

➔ Sequential search - O(N)
➔ Binary search - O(log N)

Binary search

❏ Array must already be sorted!
❏ Divide problem size in half with each iteration, hence the O(log N)

Pseudocode (source: www.codecodex.com/wiki/Binary_search):

// recursive binary search, returns item if found

binarySearch(a, value, left, right)

 if right < left, then return not found

 mid = (right + left)/2

 if a[mid] == value

 return mid

 if value < a[mid] // smaller value means search left

 return binarySearch(a, value, left, mid-1)

 else // larger value means search right

 return binarySearch(a, value, mid+1, right)

7

https://www.geeksforgeeks.org/stability-in-sorting-algorithms/
http://www.codecodex.com/wiki/Binary_search

Since binary search is tail recursion, we can (pretty easily) make it iterative.

// iterative binary search

binarySearch(a, value, left, right)

 while left ≤ right

 mid = (right + left)/2

 if a[mid] == value

 return mid

 if value < a[mid] // smaller value means search left

 right := mid-1

 else // larger value means search right

 left := mid+1

 return not found

8

C. Algorithm Analysis, Big-O
** Book: Muganda Ch 17.3

17.3 Algorithm Analysis
Big-O!

We can estimate the efficiency of an algorithm...

Our analysis is different than benchmarking, which involves running your algorithm and
measuring it. Disadvantages to benchmarking... measurements will be impacted by
many “real world” factors, including:

❖ Programming language and compiler choices
❖ Computer and operating system you’re using
❖ Load factor on your system while running
❖ Input values used during testing

Another disadvantage to benchmarking… Coding! Coding is work, and an algorithm
must be implemented in code to benchmark it.

But look at the glass half full… without even coding up our algorithm, analysis gives us
a measurement that is independent of any sticky issues like what computer you use or
what data you run. This is powerful!

Algorithm analysis provides for a theoretical bounds for the performance of an
algorithm in relation to the size of its inputs.
Here’s a fancier way of saying this:

the analysis of algorithms is the determination of the computational complexity of
algorithms, that is the amount of time, storage and/or other resources necessary
to execute them. Usually, this involves determining a function that relates the
length of an algorithm's input to the number of steps it takes (its time complexity)
or the number of storage locations it uses (its space complexity).

- en.wikipedia.org/wiki/Analysis_of_algorithms

Worst case complexity vs. average case complexity - which is more important?
It depends. How common is the “worst case”. We see that hash table are O(N) in the
worst case, but we take all measures (good hash function, resizing) to avoid worst case.

9

https://en.wikipedia.org/wiki/Analysis_of_algorithms

Try to categorize asymptotic performance of our algorithm with Big-O.
We say the complexity of an algorithm f(n) is

O(g(n) if f(n) <= c*g(n), for n>n
0

Maybe this is better.

Source: UW-Stout, http://slideplayer.com/slide/8348651/

Big-O is an upper bound of our algorithm’s performance! This is important, so that we
can answer the question… performance will never be worse than this g(n).

Muganda: Another way... f(n)/g(n) becomes small or disappears as N gets large

Morin: “Big-oh notation allows us to reason at a much higher level” (yes!)

10

http://slideplayer.com/slide/8348651/

We can remove constants and multiples from our f(n) when categorizing using Big-O.
These factors are insignificant when N is large.

● 32n2 = O(n2)
● n2 + n 170 = O(n2)

Source: meherchilakalapudi.wordpress.com/category/data-structures-1asymptotic-analysis/

Big-O rate of growth functions, in order:

➢ O(1) = constant time; example is hash table get/put
➢ O(log N) = logarithmic time; example is binary search
➢ O(N) = linear time; example is sequential search
➢ O(N log N) = “n log n time” or linearithmic; example is Heapsort
➢ O(n2) = quadratic time; example is bubble sort
➢ O(n3), O(n4), etc = polynomial time; example is triple loop
➢ O(2N) = exponential time; example is recursive Fibonacci

11

https://meherchilakalapudi.wordpress.com/category/data-structures-1asymptotic-analysis/

Always remember - our “most important chart of 210”... huzzah!

Source:www.hackerearth.com/practice/notes/big-o-cheatsheet-series-data-structures-and-algorithms-with

-thier-complexities-1/

For all the hand-waving, Big-O essentially tries to fit an algorithm into one of these
complexity buckets, from constant time to exponential. If we can do this, then we have a
good upper bound and good, quick description of the performance of our algorithm.
This is very valuable.

12

https://www.hackerearth.com/practice/notes/big-o-cheatsheet-series-data-structures-and-algorithms-with-thier-complexities-1/
https://www.hackerearth.com/practice/notes/big-o-cheatsheet-series-data-structures-and-algorithms-with-thier-complexities-1/

Big-O functions at various values for N.

Source: www.cpp.edu/~ftang/courses/CS240/lectures/img/alg-tab.jpg

This is fun too: bigocheatsheet.com/

Extras
These are other “Big” functions that are less important to us.

➔ Big Omega, Ω(f(n)) - defines the lower bound of performance for an algorithm

➔ Big Theta, Θ(n) - provides a tighter (upper and lower) bound for the performance
of an algorithm

You can read more here: www.khanacademy.org/computing/computer-science/
algorithms/asymptotic-notation/a/asymptotic-notation

13

https://www.cpp.edu/~ftang/courses/CS240/lectures/img/alg-tab.jpg
http://bigocheatsheet.com/
https://www.khanacademy.org/computing/computer-science/algorithms/asymptotic-notation/a/asymptotic-notation
https://www.khanacademy.org/computing/computer-science/algorithms/asymptotic-notation/a/asymptotic-notation

Finally…
Big-O is a part of one of the most significant unsolved problems in math/computer
science today. It’s known as the P vs. NP Problem. If you can publish a solution, these
guys will give you a million bucks.

www.claymath.org/millennium-problems/p-vs-np-problem

In fact, one of the outstanding problems in computer science is determining
whether questions exist whose answer can be quickly checked, but which require
an impossibly long time to solve by any direct procedure. Problems like the one
listed above certainly seem to be of this kind, but so far no one has managed to
prove that any of them really are so hard as they appear, i.e., that there really is
no feasible way to generate an answer with the help of a computer. Stephen
Cook and Leonid Levin formulated the P (i.e., easy to find) versus NP (i.e., easy
to check) problem independently in 1971.

P problems are those where solutions are easily found (polynomial time, hence the “P”).
NP problems are those that are easy to verify (in polynomial time), but hard to solve.
A large set of problems are called NP-complete as they can be easily verified, but no
one has proven that they are hard to solve yet.

www.claymath.org

14

http://www.claymath.org/millennium-problems/p-vs-np-problem
http://www.claymath.org/

