
Week 5 Notes
Prof Bill - Apr 2018

First, we’ll cover leftovers from week 4… Quicksort.

Then… Week 5 notes are:

A. Midterm Preview

B. Lightning2 Lecture

C. Binary Search Tree (BST) intro

thanks… yow, bill

1

A. Midterm Preview
Midterm details…

❏ When: Thu Apr 26, 2018 @ 2:00 pm

❏ Where: Wentz Science Center, Room 104, our regular classroom

❏ How much: It’s worth 25 points, 25% of your grade

❏ How long: 70 minutes

❏ What to bring: Bring 1 side of 1 page of notes to the exam

❏ What NOT to bring: Sorry, no calculators or gizmos of any kind

The midterm will cover anything that we have covered in

➔ Textbook - almost exclusively Muganda
➔ Lecture - weekly notes/outlines are on our class website
➔ Homework #1 - #4 - my solution on the k: drive
➔ Programs #1, #2 - my solution on the k: drive

In this preview (and for the Midterm), I leaning heavily on my program assignments and
class notes/outlines for each week. They’re at the class website:

wtkrieger.faculty.noctrl.edu/csc210-spring2018/

2

http://wtkrieger.faculty.noctrl.edu/csc210-spring2018/

Topics we have covered so far include:

Week Topic Book/Etc

1 Java/OOP review Muganda Ch 1-6, 8, 10

 C programming, linked list Program #1 Wheel of Decision

2 Arrays and ArrayList Muganda Ch 7

 Linked Lists Muganda Ch 20

 Stacks and Queues Muganda Ch 2

3 Java Collections Framework (JCF) Muganda Ch 19.1-19.2

 JavaFX Muganda Ch 15

 JCF: Sets, Maps, etc Muganda Ch 19.3-19.6

 Hash tables Muganda Ch 19.3-19.4 + my notes

 JavaFX, JCF, gui design Program #2 GUI of Decision

4 Recursion Muganda Ch 16

 Sort + search Muganda Ch 17.1-17.2

 Algorithm analysis, Big-O Muganda Ch 17.3 + my notes

3

B. Lightning2 Lecture
Preview of the 2nd half of 210 in 15 minutes or less. Huzzah!

Lightning1
Remember the Lightning Lecture from our first class?
Topics were: array, Big-O, linked list, hash table

/* Note - after my favorite chart, it’s all 2nd half… nothing on the midterm exam */

The 2nd half will feature: trees, graphs, heaps, and some cool algorithms.
Read on!

4

Trees
Trees have nodes, like a linked list. So, tree structures are recursive/self-referential.

Binary Search Tree (BST) is popular and simple.
A doubly-linked list node has: 1) data, 2) next and 3) prev node pointers.
BST Tree nodes have: 1) data, 2) left and 3) right node pointers.

The BST trick (so you can sort and search quickly)... for each node:

● Left child (key) < parent node (key)
● Right child > parent node

Other trees:

➔ AVL tree, Red-black tree - two tree schemes to try and keep BST balanced
➔ B-tree - trees where nodes have more than two children

Graphs
Graphs have nodes as well. It’s a little more complicated because these nodes are used
to model connectivity in a graph. Graph nodes are connected by edges.

Graphs are used to model many things: networks, circuits, maps, mazes, etc.
Graph algorithms allow us to search graphs, find shortest paths, etc.

5

The Princeton text rocks (but it goes deep fast):
algs4.cs.princeton.edu/40graphs/

A better intro may be this (cool) lecture from Rutgers CS:

www.cs.rutgers.edu/~mlittman/courses/cs105-06b/lectures/10graphs.pdf

Heap, Priority Queue
A Priority Queue is a queue that isn’t FIFO. It’s a queue that’s ordered by an object’s
priority.

en.wikipedia.org/wiki/Priority_queue

There are numerous important priority queue applications: CPU job scheduling, printer
job scheduling, search algorithms, etc.

A heap is a (very cool) data structure that efficiently implements a priority queue.
It looks like a tree, and it is. But it’s usually implemented using an array. (yow!)

6

https://algs4.cs.princeton.edu/40graphs/
https://www.cs.rutgers.edu/~mlittman/courses/cs105-06b/lectures/10graphs.pdf
https://en.wikipedia.org/wiki/Priority_queue

Cool algorithms
The more sophisticated data structures in the 2nd half being with them, some cool
algorithms:

➔ Shortest path in a graph
➔ Breadth-first and depth-first traversal of a graph
➔ Inorder, preorder, postorder traversal of graph
➔ Finding cycles in graph
➔ Min spanning tree in a graph
➔ BST search
➔ Balanced tree rotations
➔ Priority queue removeMin()

And more!
thanks… yow, bill

Source: fromcaterpillarstobutterflies.com/inspiration/top-10-quotes-finishing-strong/

7

http://fromcaterpillarstobutterflies.com/inspiration/top-10-quotes-finishing-strong/

C. Binary Search Tree (BST)
** Book: Muganda 22.1-22.2
** Online: Princeton, algs4.cs.princeton.edu/32bst
** Online: This animation is great: www.cs.usfca.edu/~galles/visualization/BST.html

Binary Search Tree (BST) is built out of nodes, ala linked lists.
Each node has data (key, value) and two node pointers: left and right.

Source: cppbetterexplained.com/binary-search-trees/

Here’s the magic… for every node:

Its left child is less than (<) and the right child is great (>).

That’s it. Let’s build one.
An empty BST is root = null (not shown below).
Below: the root is the first node added; in this case 31.

.
Source: csegeek.com/csegeek/view/tutorials/algorithms/trees/tree_part2.php

8

https://algs4.cs.princeton.edu/32bst/
https://www.cs.usfca.edu/~galles/visualization/BST.html
http://cppbetterexplained.com/binary-search-trees/
http://csegeek.com/csegeek/view/tutorials/algorithms/trees/tree_part2.php

Notice in our example:
● The root doesn’t change when adding to the tree
● Every new node is added as a leaf

There are 3 important methods in the BST ADT:

1. put(K key, V value) - we just did this
2. V get(K key)
3. V remove(K key)

With put() - Often, we just show the keys. The value is there or it’s just keys (like a set)

Here’s get() pseudocode… it’s a recursive search:

get(K key) {

 return getNode(root, key) // start at root

}

V getNode(Node n, K key) {

 if n == null then return null // NOT found

 if key == node.key return node.value // FOUND

 if key < node.key

return getNode(node.left, key) // look LEFT

 else

return getNode(node.right, key) // look RIGHT

}

We’ll do remove() later. It’s a little more involved.

Questions:

● What is the average Big-O for put and get methods? Worst case?

● Is it possible for BST to get VERY unbalanced? Example, please.

● TreeMap and TreeSet in JCF are (supposedly) red-black (balanced) trees.

● Ready for Homework #5?

9

