
Week 6 Notes
Prof Bill - Apr 2018

In Week 6, we’ll cover:

A. Binary Trees and BST

B. Priority Queue

thanks… yow, bill

1

A. Binary Trees, Binary Search Tree (BST)
** Book: ​Muganda 22.1-22.2
** Online: ​Princeton​, ​algs4.cs.princeton.edu/32bst
** Online: This ​animation​ is great: ​www.cs.usfca.edu/~galles/visualization/BST.html
** Online: A nice lecture: ​www.cs.cmu.edu/~adamchik/15-121/lectures/Trees/trees.html

22.1 Binary Trees
Binary tree has nodes like a linked list. Each ​node​ has data (key, value) and then left
and right node pointers. The ​root​ is the first node in the tree.

Source: ​cppbetterexplained.com/binary-search-trees/

Binary trees are recursive structures because nodes have nodes in them.
Also, subtrees behave just like the overall tree. Makes for easy recursive methods.

Source: ​www.sqa.org.uk/e-learning/LinkedDS04CD/page_30.htm

Traversal:

➢ Preorder: root, left, right
➢ Inorder: left, root, right // sorted order in a BST
➢ Postorder: left, right, root

/* memory helper: 1) root determines pre, in, or post and 2) left always before right */

2

https://algs4.cs.princeton.edu/32bst/
https://www.cs.usfca.edu/~galles/visualization/BST.html
https://www.cs.cmu.edu/~adamchik/15-121/lectures/Trees/trees.html
http://cppbetterexplained.com/binary-search-trees/
https://www.sqa.org.uk/e-learning/LinkedDS04CD/page_30.htm

Pseudocode… start process with call: inorder(root):

// inorder traversal to print binary tree

void inorder(Node n)

 if n == null then return

 inorder(n.left)

 print n

 inorder(n.right)

22.2 Binary Search Trees (BST)
A binary tree + this magic… for every node:

left child is less than (<) node
right child is greater than (>) node

That’s it. Let’s build one. An empty BST is root = null (not shown below).
Below: the root is the first node added; in this case 31.

.
Source: ​csegeek.com/csegeek/view/tutorials/algorithms/trees/tree_part2.php

Notice in our example:

● The root doesn’t change when adding to the tree
● Every new node is added as a leaf

Performance for BST magic,

➔ Average performance is O(log n), problem cut in half with each subtree
➔ Worst-case performance is O(n), unbalanced tree turns into a linked list (dop!)

3

http://csegeek.com/csegeek/view/tutorials/algorithms/trees/tree_part2.php

There are 3 important methods in the BST ADT:

1. put(K key, V value) - we just did this
2. V get(K key)
3. V remove(K key)

See ​Muganda Code 22-8, 22-9​ for Java code.

With ​put()​ - Often, we just show the keys. The value is there or it’s just keys (like a set).
Use same left/right algorithm as get() below. New node is always a leaf!

Here’s ​get()​ pseudocode… it’s a recursive search:

get(K key) {

 return getNode(root, key) // start at root

}

V getNode(Node n, K key) {

 if n == null then return null // NOT found

 if key == node.key return node.value // FOUND

 if key < node.key

return getNode(node.left, key) // look LEFT

 else

return getNode(node.right, key) // look RIGHT

}

Remove is a little tougher.

4

Three cases, removing a node with no children (leaf), one child, and two children:
➔ No children (leaf) - null out the parent’s link to the node (easy)

Source: ​www.techiedelight.com/deletion-from-bst/

➔ One child - replace node with its child (pretty easy)

Source: ​www.cs.cmu.edu/~adamchik/15-121/lectures/Trees/pix/del01.bmp

➔ Two children - replace node with predecessor (largest node in left subtree,

tougher)

About two children - Successor is ok too, smallest node in right subtree; Pred/Succ are
always a leaf or one-child node. Yes?

5

http://www.techiedelight.com/deletion-from-bst/
https://www.cs.cmu.edu/~adamchik/15-121/lectures/Trees/pix/del01.bmp

B. Priority Queue
** Book: ​Muganda 22.4
** Online: great animation: ​www.cs.usfca.edu/~galles/visualization/Heap.html

22.4 Priority Queue

Priority Queue ADT​ - Insert based on a user-specified priority rather than order of
insertion like a regular, old queue. Operations include:

insert(item)

item removeMin()

boolean isEmpty()

Heap property​ - each node is smaller than its children
Pseudocode:

// insert item into the heap

insert(item)

add item as next leaf node

while heap property is not met

swap node with parent

// remove and return the smallest item from the heap

item removeMin()

minItem = root

put last leaf as root // restore heap

while head property is not met

swap node with smallest child

return minItem

JCF ​PriorityQueue​ holds ​Comparable​ objects. You can use a ​Comparator​ as well.
docs.oracle.com/javase/8/docs/api/java/util/PriorityQueue.html

Heapsort​ - add items to heap, then removeMin() them for sorted order.

Terms: complete binary tree, binary tree depth

Heap performance:

● insert is O(log n) because the tree depth is log n.

6

https://www.cs.usfca.edu/~galles/visualization/Heap.html
https://docs.oracle.com/javase/8/docs/api/java/util/PriorityQueue.html

● removeMin is O(log n)... the min is right there, O(1), but you have to swap and
restore the heap, which is O(log n)

BTW - PQ and Heap can be flipped to max if you like… parent greater than children and
removeMax().

Heap as an array
The BIG $$$ for heap = removeMin() and storing the heap as an array

➢ works because it is a complete binary tree

The visualization shows you the array representation right next to the graphical tree.
www.cs.usfca.edu/~galles/visualization/Heap.html

Equations for array storage of a heap:

root of tree = A[0]
parent of node A[k] = A[(k-1)/2]
left child of node A[k] = A[2k+1]
right child of node A[k] = A[2k + 2] // left child + 1

7

https://www.cs.usfca.edu/~galles/visualization/Heap.html

