
Week 8 Notes
Prof Bill - May 2018

Week 8 is one lecture... Intro to graphs.

Zee plan.

❖ Week 8 - define terms and data structures for graphs
❖ Week 9, 10 - graph algorithms like shortest path, min spanning tree, search,

topological sort, bipartite, etc

We’re leaving Muganda-land… graphs aren’t covered in the Muganda text.
Fortunately, our online resources are strong here:

● Princeton Chapter 4 graphs is good, algs4.cs.princeton.edu/40graphs
● Princeton lecture notes (slide) are very nice, too, algs4.cs.princeton.edu/lectures
● Animated graph algorithms (from our favorite site),

www.cs.usfca.edu/~galles/visualization/Algorithms.html

thanks… yow, bill

1

https://algs4.cs.princeton.edu/40graphs/
https://algs4.cs.princeton.edu/lectures/
https://www.cs.usfca.edu/~galles/visualization/Algorithms.html

A. Graphs
** Online: Princeton Chapter 4 is excellent, algs4.cs.princeton.edu/40graphs/
** Animation: www.cs.usfca.edu/~galles/visualization/RedBlack.html

4.1 Undirected Graphs
Princeton Reading:

❖ Section 4.1 Undirected Graphs, algs4.cs.princeton.edu/41graph/
❖ Section 4.1 slides, algs4.cs.princeton.edu/lectures/41UndirectedGraphs.pdf

➢ 4 slides/page, algs4.cs.princeton.edu/lectures/41UndirectedGraphs-2x2.pdf

Terms: (from Princeton reading)

● graph, edges, vertices, adjacent vertices, edge incident on vertices, subgraph
● self-loop, parallel edges, vertex degree
● path, simple path, cycle, simple cycle, path/cycle length, connected vertices,

connected graph
● acyclic graph, tree, forest, spanning tree, bipartite graph

More terms (not in Princeton):

➔ weighted graph - a graph where edges have an associated weight (example: a
graph of cities, edge weights are distance between cities)

/* shorthand: verts = vertices */

Undirected Graph API

2

https://algs4.cs.princeton.edu/40graphs/
https://www.cs.usfca.edu/~galles/visualization/RedBlack.html
https://algs4.cs.princeton.edu/41graph/
https://algs4.cs.princeton.edu/lectures/41UndirectedGraphs.pdf
https://algs4.cs.princeton.edu/lectures/41UndirectedGraphs-2x2.pdf

Data structures

Three most common graph data structures:

1. adjacency list - each vertex holds list of connected vertices
2. adjacency matrix - 2D array, size = (#verts x #verts), array slot[x,y] = 1 if edge

exists between verts x and y
3. edge list - linked list (or ArrayList) of edges, each edge is a vert pair: (u, v)

Source: bournetocode.com/projects/AQA_A_Theory/pages/graph.html

For example above, edge list is: { (1,2), (1, 3), (1, 4), (2, 3), (3, 4) }

Sparse graphs: use adjacency list. Dense graph: use adjacency matrix.
Sparse graph = large num verts, small average vert degree.
If verts have names, use symbol table (hash table) to get int from vert name

Traversal
Traversal/search = visit all verts in the graph or all connected verts (subgraph)

Depth-first search (DFS) - key concept: it’s recursive!
Pseudocode:

// mark vertex v as visited, then recursively visit all connected verts

// prior to first dfs call, mark all verts as not visited

dfs(vertex v)

mark v as visited

for each vert w: adjacent to v {

if w not visited

dfs(w)

}

Animation: www.cs.usfca.edu/~galles/visualization/DFS.html

3

https://bournetocode.com/projects/AQA_A_Theory/pages/graph.html
https://www.cs.usfca.edu/~galles/visualization/DFS.html

Breadth-first search (BFS) - key concept - use a queue!
Pseudocode:

// use queue to do a breadth-first traversal of graph

bfs(vertex v)

mark all verts not visited

q = new queue

q.enqueue(v)

mark v as visited

while ! q.isEmpty() {

v2 = q.dequeue()

for each vert w: adjacent to v2 {

if w not visited

q.enqueue(w)

mark w as visited

}

}

Animation: www.cs.usfca.edu/~galles/visualization/BFS.html

Question: In earlier DFS pseudocode, can we remove recursion?
Answer: Yes! Use a stack, similar to the use of a queue in BFS,
www.mathcs.emory.edu/~cheung/Courses/171/Syllabus/11-Graph/dfs.html

4.2 Directed Graphs
Princeton reading:

❖ Section 4.2 Directed Graphs, algs4.cs.princeton.edu/42digraph
❖ Section 4.2 slides, algs4.cs.princeton.edu/lectures/42DirectedGraphs.pdf

➢ 4 slides/page, algs4.cs.princeton.edu/lectures/42DirectedGraphs-2x2.pdf

Terms:

● in-degree, out-degree
● directed path, directed cycle, length of a path (# edges), reachable vertex,

strongly connected
● dag = directed acyclic graph, topological sort

Directed Graph data structure and API - practically the same as undirected… but edges
have direction.

4

https://www.cs.usfca.edu/~galles/visualization/BFS.html
http://www.mathcs.emory.edu/~cheung/Courses/171/Syllabus/11-Graph/dfs.html
https://algs4.cs.princeton.edu/42digraph/
https://algs4.cs.princeton.edu/lectures/42DirectedGraphs.pdf
https://algs4.cs.princeton.edu/lectures/42DirectedGraphs-2x2.pdf

