
Week 9 Notes
Prof Bill - May 2018

Week 9… graph algorithms.

❏ Graph traversal: DFS, BFS

❏ Topological Sort

❏ Shortest Path: Dijkstra’s Algorithm

❏ Minimum Spanning Tree: Prim, Kruskal

thanks… yow, bill

1

A. Graph Traversal
** Online: Read pages 27-53, ​algs4.cs.princeton.edu/lectures/41UndirectedGraphs.pdf
** Animation:

● DFS, ​www.cs.usfca.edu/~galles/visualization/DFS.html
● BFS, ​www.cs.usfca.edu/~galles/visualization/BFS.html

Graph traversal​ - explore graph by visiting all verts
Two flavors: Depth-first search (DFS) and Breadth-first search (BFS)

Depth-first search (DFS)
Key concept - it’s recursive!
Pseudocode:

// mark vertex v as visited, then recursively visit all connected verts

// prior to first dfs call, mark all verts as not visited

dfs(vertex v)

 mark v as visited

 for each vert w: adjacent to v {

 if w not visited

 dfs(w)

 }

Applications of DFS: detect cycle in graph, find path between verts, determine if
connected graph, topological sort, determine if bipartite graph, walk thru maze
Source: ​www.geeksforgeeks.org/?p=11644

Traversal example: Start at vertex A, list verts as you visit them
/* when you have a choice of >1 verts, use sorted order */

2

https://algs4.cs.princeton.edu/lectures/41UndirectedGraphs.pdf
https://www.cs.usfca.edu/~galles/visualization/DFS.html
https://www.cs.usfca.edu/~galles/visualization/BFS.html
https://www.geeksforgeeks.org/?p=11644

DFS traversal example answer: A, C, F, B, G, D, E, H

Breadth-first search (BFS)
Key concept - use a queue!
Pseudocode:

// use queue to do a breadth-first traversal of graph

bfs(vertex v)

 mark all verts not visited

 q = new queue

 q.enqueue(v)

 mark v as visited

 while ! q.isEmpty() {

 v2 = q.dequeue()

 for each vert w: adjacent to v2 {

 if w not visited

 q.enqueue(w)

 mark w as visited

 }

 }

Applications of BFS: min spanning tree, shortest path, peer-to-peer networks, social
media, search engine crawlers,
Source: ​www.geeksforgeeks.org/applications-of-breadth-first-traversal/

Try traversal example again, using BFS…

BFS traversal example answer: A, C, D, F, G, E, H, B

3

https://www.geeksforgeeks.org/applications-of-breadth-first-traversal/

B. Topological Sort
** Online: Read pages 38-50, ​algs4.cs.princeton.edu/lectures/42DirectedGraphs.pdf

** Animation: ​www.cs.usfca.edu/~galles/visualization/TopoSortDFS.html

Topological sort​ - a nice recursive definition

An ordering of vertices in a directed acyclic graph, such that:
If there is a path from u to v, then v appears after u in the ordering.

Also...

● For directed acyclic graph (​DAG​) only, please.
● There can be more than one topological sort for any graph.
● A ​cycle​ in the graph breaks this definition and therefore has no topological sort.

For example: path from u to v… and also v to u… then who goes first in sort?

Example: What is topological sort?

Source: ​lcm.csa.iisc.ernet.in/dsa/node170.html

4

https://algs4.cs.princeton.edu/lectures/42DirectedGraphs.pdf
https://www.cs.usfca.edu/~galles/visualization/TopoSortDFS.html
http://lcm.csa.iisc.ernet.in/dsa/node170.html

Example answer: B A D C E

DFS algorithm
Combine DFS with stack. Push vert onto stack after its DFS traversal is done.
Topological sort = reverse postorder of DFS search.

Pseudocode

// print verts in topological sort order

toposort(graph g) {

 s = new stack

 for each vert v in g

 dfs2(v, s)

 while not s.isEmpty()

 v = s.pop()

 print v

}

// dfs traversal, vert pushed on stack once all neighbors visited

dfs2(vertex v, stack s) {

 mark v as visited

 for each vert w: adjacent to v {

 if w not visited

 dfs(w)

 }

 s.push(v)

}

5

C. Shortest Path: Dijkstra’s Algorithm
** Online: Princeton section, ​algs4.cs.princeton.edu/lectures/44ShortestPaths.pdf

** Animation: ​www.cs.usfca.edu/~galles/visualization/Dijkstra.html

weighted graph​ - each edge has a positive weight (distance, force, etc)

Dikstra’s Algorithm​ - single-source shortest path in a graph; greedy + relaxation

● greedy algorithm - choose the shortest (best) edge at each step.
● relaxation - shortest path updated during algorithm with better option, if found

Basis for Dijkstra = edge relaxation:

// if new path to v is shorter, then use it!

if D[u] + w(u, v) < D[v] then

D[v] = D[u] + w(u, v)

Etc.

➢ Positive weights only, negative weights break some algorithms (like Dijkstra)
➢ To use Dijkstra on unweighted graphs, use weight=1 for each edge
➢ Dijsktra algo has a single source (vert), but find the shortest path to ​all​ other verts

from the source
➢ Edsger W. Dijkstra was a GIANT in computer science,

en.wikipedia.org/wiki/Edsger_W._Dijkstra

QOTD

The art of programming is the art of organizing complexity, of mastering multitude
and avoiding its bastard chaos as effectively as possible.

- Dijkstra, ​en.wikiquote.org/wiki/Edsger_W._Dijkstra

6

https://algs4.cs.princeton.edu/lectures/44ShortestPaths.pdf
https://www.cs.usfca.edu/~galles/visualization/Dijkstra.html
https://en.wikipedia.org/wiki/Edsger_W._Dijkstra
https://en.wikiquote.org/wiki/Edsger_W._Dijkstra

Pseudocode
Prep notes:

➔ d[v] = distance (sum of weights) from source to v; init to d[v] = INF
➔ prev[v] = previous edge on shortest path to v; init to path[v] = -1
➔ d[v] and path[v] are updated and improved over the iterations (relaxation!)
➔ controlling data structure: Priority Queue with verts ordered by distance, d[v]

// Dijkstra’s algorithm, single-source shortest path

shortestPath(graph G, vertex source)

 for all verts v // init all vert with infinite distance and no prev edge

 d[v]=INF

 prev[v]=-1

 d[source] = 0 // distance to source is zero

 pq.enqueue(source)

 while pq not empty {

 u = pq.removeMin()

 for each edge (u, v) {

 if d[u] + weight(u, v) < d[v]

 d[v] = d[u] + weight(u, v) // relaxation

 prev[v] = u

 if pq.contains(v) then pq.decreaseKey(v, d[v])

 else pq.enqueue(v)

 }

 }

Wrap notes:

➔ Shortest path now contained in d[] and prev[] arrays
◆ Shortest path distance from source to any vert v is at d[v]
◆ Reconstruct verts in the path by looping back from prev[v] to the source

➔ Performance: With binary heap, O(log V) operations (enqueue, decreaseKey,
removeMin) performed for each edge = ​O(E log V)

Question: What are d, prev for an unreachable vertex?

7

Example (from Princeton): Find shortest paths, starting at vert 0

Solution is Princeton, Slide 38.

Dijkstra’s greedy algo is similar to Prim’s for min spanning tree… coming up!

8

D. Min Spanning Tree: Prim, Kruskal
** Online: Princeton section,
algs4.cs.princeton.edu/lectures/43MinimumSpanningTrees.pdf

** Animation:

➔ Prim’s algorithm: ​www.cs.usfca.edu/~galles/visualization/Prim.html
➔ Kruskal’s algorithm: ​www.cs.usfca.edu/~galles/visualization/Kruskal.html

spanning tree​ - a tree that contains every vertex in a connected graph (remember -
tree means no cycles!); it’s a list of edges

min spanning tree​ - the spanning tree where the sum of edge weights is smallest

9

https://algs4.cs.princeton.edu/lectures/43MinimumSpanningTrees.pdf
https://www.cs.usfca.edu/~galles/visualization/Prim.html
https://www.cs.usfca.edu/~galles/visualization/Kruskal.html

Prim’s Algorithm
In English: Pick a vertex to be root of the tree. Find the min weight edge connected to
the tree. Add that edge’s vertex. Repeat until all vertices are in the tree.
Similar to Dijkstra’s Algorithm for finding shortest path.
Animation: ​www.cs.usfca.edu/~galles/visualization/Prim.html

Pseudo-code:

PrimsMST(G, startv)

create distance array, D[#vertices] = inf

create parent array, parent[#vertices] = -1

create known array, known[#vertices] = false

D[startv] = 0 // start vertex is tree root

add each D[i] to PriorityQueue PQ

while PQ not empty

u = PQ.removeMin()

known[u] = true

for each edge connected to u, (u, v)

if ! known[v] and weight of edge < D[v]

D[v] = weight of edge

parent[v] = u

change D[v] key in PQ // remove, and re-add to PQ

for each vertex, v

add edge (v, parent[v]) to MST list

10

https://www.cs.usfca.edu/~galles/visualization/Prim.html

Kruskal’s Algorithm
In English:

sort the edges by weight
for each edge

add edge to MST if it doesn’t create a cycle

Animation: ​www.cs.usfca.edu/~galles/visualization/Kruskal.html

Pseudo-code:
KruskalsMST(G)

place each vertex in its own disjoint set

sort all edges in G by weight

for each edge (u,v)

ds1 = find disjoint set of u

ds2 = find disjoint set of v

if ds1 != ds2

add edge to MST list

union(ds1, ds2) // merge 2 disjoint sets into 1

What’s are disjoint sets? What is find()? Union?
Answer: Disjoint set is a collection of sets whose members don’t intersect.
We use a nifty representation of disjoint sets (an array) to efficiently determine if adding
edge would create a cycle. A lot of people use disjoint sets, eh...

en.wikipedia.org/wiki/Disjoint-set_data_structure

11

https://www.cs.usfca.edu/~galles/visualization/Kruskal.html
https://en.wikipedia.org/wiki/Disjoint-set_data_structure

Example:

Source: ​www.cs.usfca.edu/~galles/visualization/Prim.html

1) Run Prim’s

2) Run Kruskal’s

12

https://www.cs.usfca.edu/~galles/visualization/Prim.html

Answer:

13

