Graph notes
Prof Bill - Apr 2020
These notes introduce graphs and various data structures used to represent them.
Sections:
1. Undirected graphs
2. Data structures

3. Directed graphs

Reading. Happily, our online resources are pretty strong here:

> Princeton Chapter 4 graphs is good, algs4.cs.princeton.edu/40graphs

> Animated graph algorithms (from our favorite site),
www.cs.usfca.edu/~galles/visualization/Algorithms.html

Sedgewick also has both slides and videos in support of his data structures text.
Here’s the index to all of it:

algs4.cs.princeton.edu/lectures

If video learning is your thing, scroll down for these graph lectures: Lecture 12
Undirected Graphs, and Lecture 13 Directed Graphs.

| prefer slides (sometimes) without the video. Scroll down (again), to “Table of lectures”.
The slide PDF’s are on the left.

Coming soon...we’ll hit as many cool graph algorithms as we can chomp: shortest path,
min spanning tree, search/traverse, topological sort, bipartite, etc.

thanks... yow, bill


https://algs4.cs.princeton.edu/40graphs/
https://www.cs.usfca.edu/~galles/visualization/Algorithms.html
https://algs4.cs.princeton.edu/lectures/

1. Undirected graphs

Sedgewick reading:

% Section 4.1 Undirected Graphs, algs4.cs.princeton.edu/41graph

« Slides, algs4.cs.princeton.edu/lectures/keynote/41UndirectedGraphs-2x2.pdf

Terms: (from Sedgewick)
e graph, edges, vertices, adjacent vertices, edge incident on vertices, subgraph
e self-loop, parallel edges, vertex degree

e path, simple path, cycle, simple cycle, path/cycle length, connected vertices,
connected graph

e acyclic graph, tree, forest, spanning tree, bipartite graph

More terms (not in Sedgewick):

- weighted graph - a graph where edges have an associated weight (example: a
graph of cities, edge weights are distance between cities)

/* shorthand: verts = vertices */

Undirected Graph API (pretty dreamy: simple, efficient)

public class Graph

Graph({int V) create a V-vertex graph with no edges
Graph{In in) read a graph from input stream in
int V() number of vertices
int E() number of edges
void addEdge(int v, int w) add edge v-w to this graph
Iterable<Integer> adj(int v) vertices adjacent to v
String toString() string representation

API for an undirected graph


https://algs4.cs.princeton.edu/41graph/
https://algs4.cs.princeton.edu/lectures/keynote/41UndirectedGraphs-2x2.pdf

2. Data structures

Three most common graph data structures:
1. adjacency list - each vertex holds list of connected vertices

2. adjacency matrix - 2D array, size = (#verts x #verts), array slot[x,y] = 1 if edge
exists between verts x and y

3. edge list - linked list (or ArrayList) of edges, each edge is a vert pair: (u, v)

112(3[4
1—2(3|4
1 a0 214113
2/11/0{1|0 3-{112(4
3/11/1/0]1 4113
4, (110{1]0
Adjacency matrix Adjacency list

Source: bournetocode.com/projects/AQA_A_Theory/pages/graph.html

For example above, edge listis: { (1,2), (1, 3), (1, 4), (2, 3), (3, 4) }
Sparse graphs: use adjacency list. Dense graph: use adjacency matrix.
Sparse graph = large num verts, small average vert degree.

If verts have names, use symbol table (hash table) to get int from vert name


https://bournetocode.com/projects/AQA_A_Theory/pages/graph.html

3. Directed graph

Princeton reading:

% Section 4.2 Directed Graphs, algs4.cs.princeton.edu/42digraph

« Slides: algs4.cs.princeton.edu/lectures/keynote/42DirectedGraphs-2x2.pdf

Terms:
e in-degree, out-degree

e directed path, directed cycle, length of a path (# edges), reachable vertex,
strongly connected

e dag = directed acyclic graph, topological sort

Directed graph data structure and API - very similar to undirected... but edges have
direction.


https://algs4.cs.princeton.edu/42digraph/
https://algs4.cs.princeton.edu/lectures/keynote/42DirectedGraphs-2x2.pdf

