
Java inheritance notes
Prof Bill, Feb 2020

Our “textbook” links:

➢ Sedgewick Java 3.3 Designing data types, ​introcs.cs.princeton.edu/java/33design

➢ Oracle Java, Interfaces and Inheritance section, ​docs.oracle.com/javase/tutorial/java

Thank you - I bow down to Noctrl’s own ​Dr. Godfrey Muganda​ for his excellent Java
textbook. I have liberally borrowed ideas from this book.
media.pearsoncmg.com/bc/abp/cs-resources/products/product.html#product,isbn=0134038177

Sections:
1) Definitions, 2) UML, 3) Inheritance and ctors, 4) Override methods,
5) Access to methods and variables, 6) Classes, abstract classes, and interfaces,
7) Polymorphism, 8) The Object class

Terms:

inheritance
concrete class
abstract class
interface
polymorphism
composition

Keywords

extends, implements

this, super

public, private, protected

Versus battles:
is-a, has-a relationships
super class, subclass
override, overload
inheritance, composition
single inheritance, multiple inheritance

Object class
inner classes

uml diagram: class name, variables,
methods; has-a arrow, is-a arrow

1

https://introcs.cs.princeton.edu/java/33design/
https://docs.oracle.com/javase/tutorial/java/
https://media.pearsoncmg.com/bc/abp/cs-resources/products/product.html#product,isbn=0134038177

1. Definitions

Inheritance​ - allows a new class to extend an existing class; the new inherits the
member methods and variables

In definition above, existing class is the ​superclass​; the new class is the ​subclass​.

Java snippet:

public class NewExample ​extends​ ExistingExample {
 // new inherits methods and variables from existing

 // NewExample is subclass; ExistingExample is superclass

}

Inheritance is often called the ​is-a relationship​; example: Grasshopper is-a Insect;
another example: every class is-a Object ​implicitly​ in Java

Java has two mechanisms for inheritance:

1. Interface​, using ​implements​ keyword; methods only
2. Class​, using ​extends​ keyword; methods and variables

Composition​ - allows a new class to specify other existing classes that are a part of it

In Java, composition simply means that one object is a member variable of another.

Composition is often call the ​has-a relationship​; example: Grasshopper has-a Leg

More Grasshopper:

public class Grasshopper ​extends​ Insect {
 // Grasshopper is-a Insect; methods and vars inherited!

 // You can create Grasshopper-specific methods/vars

 Leg backLeft; // composition has-a Leg

 Leg backRight;

 int jump() {

 // code

 }

}

2

You can have levels of inheritance. Example: C is-a B, B is-a A.

public class A {

 // super class methods and variables

}

public class B extends A {

 // B is-a A; B is subclass, A superclass

}

public class C extends B {

 // C is-a B; C is subclass, B is superclass

}

Libraries like Java Collections Framework (JCF) have many, many levels of inheritance.
It’s fair to describe these libraries as “complex”.

Some people call this an ​inheritance chain​. Some call it the ​inheritance hierarchy​.

Clash of the keywords: implements vs. extends

➢ A class may only extend ​only one​ other class
➢ However, Java allows you to implement as many interfaces as you like
➢ Why the difference? Interfaces don’t have variables or ctors that can complicate

inheritance

Clash of the relationships: inheritance vs. composition, is-a vs. has-a

❖ Select relationship that best models your design
❖ This is often a difficult design decision

/* Inheritance is the core of OOP in Java. Much of this stuff is very simple and makes
sense; that’s its power. */

3

2. UML

UML class diagrams are an easy, short-hand way to describe classes and the
relationships between classes.

In UML, a class is defined as a rectangle with its name, variables, and methods

Professor

String name

String collegeId

int years

teach(Course c)

grade(int hours)

Your diagram can include +/- to indicate public/private members. If they’re missing, we
will assume that variables are private and methods are public. Data hiding!

This is a nice overview, and it’s where I got my figures below:
www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-aggregation-vs-composition/

Inheritance, the is-a relationship, is shown with an ​open arrow​ between classes
Example: SavingsAccount is-a BankAccount

Composition, the has-a relationship, is shown with a ​diamond arrow​ between classes
Example: Person has-a Hand

4

https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-aggregation-vs-composition/

We won’t cover:

➔ Some people worry about the subtle difference between composition and
aggregation...we will not

➔ The UML standard is HUGE and includes many different diagrams; we’ll only
care about the class diagram

5

3. Inheritance and ctors

General ctor rules for all classes:

➔ The ctor method name is the same as the class name; example: for the Apple
class, the default ctor is Apple().

➔ The ​default ctor​ has no parameters.
➔ If a class doesn’t have any ctor specified, then Java ​implicitly​ calls a default ctor

to create the variables for a new object.
➔ If you specify any ctors in a class, Java won’t implicitly do anything...you must

use the ctor(s) specified.

One of the downsides of inheritance...it complicates the creation of objects. Here are
some ctor guidelines:

● The superclass ctor always executes before the subclass ctor. This makes
sense: a subclass may need superclass data in its own ctor. Java makes this
happen automatically.

● In rare cases, you may want to call the super ctor yourself.
○ To do this, use the keyword ​super​.
○ When calling the super ctor, it must be the first line in your subclass ctor.
○ One reason to do this: send super ctor arguments; example: super(17)

● When interfaces are used for inheritance, these rules don’t apply. Interfaces don’t
have ctors.

● If no ctor is specified, then Java

Note the important class vs. interface tradeoff here:

+ Interfaces are simpler and more elegant than classes for inheritance; they don’t
have ctor complexity/issues

- But interfaces don’t have variables
- Interfaces are abstract and therefore can’t be created as objects

/* The impact of inheritance on ctors and creating objects is sometimes difficult and hard
to follow. This is a weakness of inheritance. */

6

4. Override methods

It’s common for a subclass to ​override​ the methods of a superclass. This is done by
matching the method name and parameters exactly in your subclass.

Some guidelines:

❏ A subclass ​must​ override any abstract methods in the superclass

❏ All interface methods are abstract (they have no code)

❏ Why override a superclass method that is ​not​ abstract (and therefore has code)?
Because the subclass needs to accomplish something different in the method.

Java snippet:

public class A {

 public void exitMaze(int level) {

 // code here

 }

}

public class B extends A {

 public void exitMaze(int level) {

 // override code here!

 }

}

You can’t override superclass variables. You can change their value, but not their type
or anything like that.

/* I can ​override​ a method. I can ​overload​ a method. What’s the difference? */

7

5. Access to methods and variables

Access to class methods and variables is controlled by these three keywords:

● public​ - can be called (method) or changed (variable) by anyone

● private​ - can only be called or changed within the class

● protected​ - can only be called or changed within the class or any subclass

For data hiding, we typically have private variables and public methods.

Java example:

public class A {

 private int powerUps;

 protected String levelName;

 public void moveMario() {

 // code here

 }

}

public class B extends A {

 public void example() {

 // powerUps var - no access because it’s private

 // levelName var - can change in subclass because it’s protected

 levelName = “Rainbow road”;

 }

}

8

6. Classes, abstract classes, and interfaces

A ​class​ has code for all its methods. This is sometimes called a ​concrete class​.

An ​interface​ has no code, only method signatures. All methods are implicitly abstract.

An ​abstract class​ is a mixture, some abstract and some code. It must be specified
explicitly using the keyword ​abstract​.

These three options are tools to you as a Java coder. They are there for you to best
model the design you are trying to implement.

Java abstract class example:

public abstract class GhostWorld {

 private String[] actors;

 public double averageReview() {

 // code here

 }

 public ​abstract​ favoriteActor(int appearances);

}

Interfaces and abstract classes ​can not​ be created as objects. They are missing code!

They can only be used as a superclass.

9

One common paradigm for abstract classes: add code to an interface.

Java snippet:

public ​interface WordCounter​ {
 public void countWord(String w);

}

public ​abstract class WordCounterAbs implements WordCounter​ {

 public void countWordsInString(String sentence) {

 // code here, calls countWord() defined in interface

 }

 public void countWordsInFile(String fileName) {

 // code here, calls countWord() defined in interface

 }

 // NOTE: no countWord() method; so class is still abstract

}

public ​class MyWordCounter extends WordCounterAbs​ {
 public countWord(String w) {

 // code here; method is no longer abstract!

 }

}

So, motivation for abstract class is often code sharing. JCF example: the abstract class
AbstractMap has code that is shared by HashMap and TreeHashMap classes.

/* Yes, abstract classes are more complex, a deeper dive. */

10

7. Polymorphism

Polymorphism literally means: many forms or shapes.

In Java, it means that a subclass method is given priority over the superclass. Example!

public interface Shape {

 public void draw();

}

public Rectangle implements Shape {

 public void draw() {

 // code to draw a rectangle

 }

}

// define Circle is-a Shape, Square is-a Shape, etc

// snippet: ArrayList of Shapes draws correctly with polymorphism

ArrayList<Shape> shapes = new ArrayList<>();

Rectangle r = new Rectangle();

shapes.add(r);

Circle c = new Circle();

shapes.add(c);

Square sq = new Square();

shares.add(sq);

for(Shape sh: shapes) {

 sh.draw(); // correct subclass method called, polymorphism!

}

Nice polymorphism example: Animal class with Cat, Horse subclasses.
beginnersbook.com/2013/03/polymorphism-in-java/

/* Once you “get it”, polymorphism is easy to use and powerful. */

11

https://beginnersbook.com/2013/03/polymorphism-in-java/

8. The Object class

Java snippet.

public class Example {

 // methods and variables here

}

Implicit for every class: Example is-a Object, or public class Example extends Object

Here’s the Javadoc: ​docs.oracle.com/javase/8/docs/api/java/util/Objects.html

Three important methods in Object:

➢ equals() - compare two objects; default use ​pointer

➢ hashCode() - get hash code for object; default use ​pointer

➢ toString() - return string for object; default create string for ​pointer

The method defaults are to use Object pointers, but that’s often not very helpful.

The answer: Override in your class.

public class Example {

 // override Object method for nicer printing

 public String ​toString​() {
 return “Last example!”;

 }

}

12

https://docs.oracle.com/javase/8/docs/api/java/util/Objects.html

