JCF notes

Prof Bill, Feb 2020

Reading:

o Official Java stuff, docs.oracle.com/javase/tutorial/collections

e Collection interface in Java API (note the methods!),

docs.oracle.com/javase/8/docs/api/java/util/Collection.html

e This is a little more palatable source; | like (and borrowed) his figures,

dzone.com/articles/an-introduction-to-the-java-collections-framework

Thank you - | (again) bow down to Noctrl's own Dr. Godfrey Muganda for his excellent
Java textbook. | have liberally borrowed ideas from this book.

media.pearsoncmg.com/bc/abp/cs-resources/products/product.html#product,isbn=0134038177

Sections: 1) Intro, 2) Lists, 3) Sets, 4) Maps, 5) Collections methods, 6) Code snippets

Terms:
JCF generic
Util package enhanced for loop
collection foreach
list lambda function
set key-value pairs
map
ArrayList hashCode()
LinkedList compareTo()
HashSet Comparable
TreeSet Comparator
HashMap

TreeMap

https://docs.oracle.com/javase/tutorial/collections/
https://docs.oracle.com/javase/8/docs/api/java/util/Collection.html
https://dzone.com/articles/an-introduction-to-the-java-collections-framework
https://media.pearsoncmg.com/bc/abp/cs-resources/products/product.html#product,isbn=0134038177

Java Collections Framework = JCF
collection: object that contain other objects
3 types of collections: list, set, map
e list - ordered collection
e set - unordered, no duplicates
e map - key-value pairs, quick retrieval by key

JCF is generic, so Collection<T>
JCF is part of the util package in Java. This Javadoc is invaluable when coding!
docs.oracle.com/javase/10/docs/api/index.htmli?java/util/package-summary.html

UML for class hierarchy - part 1: Collection interface, List and Set
Source: dzone.com/articles/an-introduction-to-the-java-collections-framework

Collection Interface

<<interface>>
Collection

<<interface>> <<interface>> o <<interface>>
Set List Queue

A%,

B L

<<interface>> . i i iori
m SortedSet ALt Feus
: <<interface>>
LinkedHashSet NavigableSet || > imp|ementS
— . extends

Collection interface methods:

add(Object), addAll(Collection), clear(),
contains(Object), containsAll(Collection), isEmpty(),
remove(Object), removeAll(Collection), size(), stream(), toArray()

https://docs.oracle.com/javase/10/docs/api/index.html?java/util/package-summary.html
https://dzone.com/articles/an-introduction-to-the-java-collections-framework

Part 2 is Map, which has a radically different set methods; little overlap with Collection,
so Map has its own interface:

Map Interface

<<interface>>
Map
~

<<interface>>
SortedMap

<<interface>>
NavigableMap

Hashmap

........... > H
mplements
— . extends

Iterator for detailed control over looping
Easier and more common, use the enhanced for loop (built using Java Iterator)

for(String name: namelist) ({
// do something here to each name in the list

Another way, Java foreach loop with a lambda function:

namelList.forEach (
X ->
{

nwo

System.out.println (“%s %d\n”, x, x.length);

)

Two Lists: ArrayList, LinkedList
List interface methods: 1) inherits all Collection methods, and 2) and adds these:

add(int pos), addAll(Collection), get(i), indexOf(Object),
remove(int pos), sort(Comparator)

ArrayList, LinkedList is-a List; can use the super class in declaration (polymorphism)
List<String> namelist = new ArrayList<>();

Listlterator methods give detailed control over iteration of List

sets are unordered collections with no duplicates
Java says:

A Set is a Collection that cannot contain duplicate elements. It models the mathematical
set abstraction. The Set interface contains only methods inherited from Collection and
adds the restriction that duplicate elements are prohibited.

- docs.oracle.com/javase/tutorial/collections/interfaces/set.html

Different implementations of Set:

e HashSet - is-a Set, implements Set with a hash table, uses hashcode() method,
inherited from Object

e LinkedHashSet - it's HashSet with a linked list added to preserve order (meh)

e TreeSet - implements Set with a binary tree

SortedSet - not an implementation, an interface for sorting elements in a Set, example:
TreeSet is-a SortedSet.

https://docs.oracle.com/javase/tutorial/collections/interfaces/set.html

maps store (key, value) pairs; each key has one value; key -> value access is fast
Java says:
A Map is an object that maps keys to values. A map cannot contain duplicate keys: Each
key can map to at most one value.
The Java platform contains three general-purpose Map implementations: HashMap,
TreeMap, and LinkedHashMap. Their behavior and performance are precisely
analogous to HashSet, TreeSet, and LinkedHashSet, as described in The Set Interface
section.
- docs.oracle.com/javase/tutorial/collections/interfaces/map.html

Catch that? Implementations are similar to Set.
They’re HashMap, TreeMap, and LinkedHashMap. SortedMap interface, too.

Some new methods in Map (types are K=key, V=value):
V get(K) - get value for this key
put(K, V) - put (key, value) in map
V remove(K) - remove (key, value) from map
Set<K> keySet() - create set of all keys in map
Collection<V> values() - create collection of all values in map
And... containsKey(K), containsValue(V), clear(), isEmpty()

These are some very useful static methods for Collection objects!
docs.oracle.com/javase/10/docs/api/index.html?java/util/Collections.html

Most popular methods are:
e binarySearch() - with Comparable or Comparator
e sort() - with Comparable or Comparator
e max(), min() - with Comparable or Comparator

copy()
reverse() - reverse the order of elements

shuffle() - randomize!

https://docs.oracle.com/javase/tutorial/collections/interfaces/map.html
https://docs.oracle.com/javase/10/docs/api/index.html?java/util/Collections.html

Comparable vs. Comparator

This is important - 2 ways to compare objects (for sorting, searching, everything!):
> compareTo() method, inherited from Comparable interface

> Comparator interface

This is a nice example to walk through... Player class, 1) order by rank using
Comparable, and 2) order by name, rank, or age using Comparator.
www.baeldung.com/java-comparator-comparable

Comparable

1) Comparable provides single sorting sequence. In
other words, we can sort the collection on the basis of

single element such as id or name or price etc.

2) Comparable affects the original class i.e. actual

class is modified.

3) Comparable provides compareTo() method to sort

elements.
4) Comparable is found in java.lang package.

5) We can sort the list elements of Comparable type by
Collections.sort(List) method.

Comparator

Comparator provides multiple sorting sequence. In
other words, we can sort the collection on the basis of

multiple elements such as id, name and price etc.

Comparator doesn't affect the original class i.e. actual

class is not modified.

Comparator provides compare() method to sort

elements.
Comparator is found in java.util package.

We can sort the list elements of Comparator type by
Collections.sort(List,Comparator) method.

Source: www.javatpoint.com/difference-between-comparable-and-comparator

Grudge match: Comparable vs. Comparator!

A The advantage of Comparable: easy to create and called implicitly.

A The advantage of Comparator: more flexible, more control, can have many ways
to compare objects of a class (name, age, rank, serial number, etc)

http://www.baeldung.com/java-comparator-comparable
https://www.javatpoint.com/difference-between-comparable-and-comparator

ArrayList - probably the most popular JCF class;

ArrayList<Dog> thePound = new ArrayList<>(); // create

Dog fido = new Dog(“Fido”, “Schipperke”); // add
thePound.add(fido);

Dog dog7 = thePound.get(7); // get 7th dog
for(Dog d : thePound) { // for each dog in the pound
findOwner (d);
System.out.println(the pound); // print, Dog must have toString()

thePound.sort (cmp); // must create Comparator cmp

TreeSet - built using a binary search tree (BST); objects must be Comparable

Set<String> fruity = new TreeSet<>(); // create
fruity.add(“apple”); // add

fruity.add(“banana”);

fruity.add(“grapes”);

fruity.add(“apple”); // add will fail! no dups allowed
fruity.contains(“orange”); // false

fruity.remove (“grapes”); // remove from set

HashMap - the keys in your HashMap should have hashCode() defined (String does)

Map<String, Car> usedCars = new HashMap<>(); // create

usedCars.put (“Mustang”, carl); // put = add
usedCars.put (“Subaru”, orangeCar):;

usedCars.get (“Subaru”); // returns the orangeCar object
usedCars.containsKey (“Corvette”); // false

/* remember - use google to find more examples if you need them! */

