
JCF notes
Prof Bill, Feb 2020

Reading:

● Official Java stuff, ​docs.oracle.com/javase/tutorial/collections

● Collection interface in Java API (note the methods!),

docs.oracle.com/javase/8/docs/api/java/util/Collection.html

● This is a little more palatable source; I like (and borrowed) his figures,

dzone.com/articles/an-introduction-to-the-java-collections-framework

Thank you - I (again) bow down to Noctrl’s own ​Dr. Godfrey Muganda​ for his excellent
Java textbook. I have liberally borrowed ideas from this book.

media.pearsoncmg.com/bc/abp/cs-resources/products/product.html#product,isbn=0134038177

Sections​: 1) Intro, 2) Lists, 3) Sets, 4) Maps, 5) Collections methods, 6) Code snippets

Terms​:

JCF
Util package
collection
list
set
map

generic
enhanced for loop
foreach
lambda function
key-value pairs

ArrayList
LinkedList
HashSet
TreeSet
HashMap
TreeMap

hashCode()
compareTo()
Comparable
Comparator

1

https://docs.oracle.com/javase/tutorial/collections/
https://docs.oracle.com/javase/8/docs/api/java/util/Collection.html
https://dzone.com/articles/an-introduction-to-the-java-collections-framework
https://media.pearsoncmg.com/bc/abp/cs-resources/products/product.html#product,isbn=0134038177

1. Intro to the JCF
Java Collections Framework = ​JCF
collection​: object that contain other objects
3 types of collections: list, set, map

● list​ - ordered collection
● set​ - unordered, no duplicates
● map​ - key-value pairs, quick retrieval by key

JCF is ​generic​, so Collection<T>
JCF is part of the ​util package​ in Java. This Javadoc is invaluable when coding!
docs.oracle.com/javase/10/docs/api/index.html?java/util/package-summary.html

UML for class hierarchy - part 1: Collection interface, List and Set
Source: ​dzone.com/articles/an-introduction-to-the-java-collections-framework

Collection interface methods:

add(Object), addAll(Collection), clear(),

contains(Object), containsAll(Collection), isEmpty(),

remove(Object), removeAll(Collection), size(), stream(), toArray()

2

https://docs.oracle.com/javase/10/docs/api/index.html?java/util/package-summary.html
https://dzone.com/articles/an-introduction-to-the-java-collections-framework

Part 2 is Map, which has a radically different set methods; little overlap with Collection,
so Map has its own interface:

Iterator for detailed control over looping
Easier and more common, use the ​enhanced for loop​ (built using Java Iterator)

for(String name: nameList) {

 // do something here to each name in the list

}

Another way, Java ​foreach​ loop with a​ lambda function​:

nameList.forEach(

 x ->

 {

 System.out.println(“%s %d\n”, x, x.length);

 });

3

2. Lists
Two Lists: ArrayList, LinkedList

List interface methods: 1) inherits all Collection methods, and 2) and adds these:

add(int pos), addAll(Collection), get(i), indexOf(Object),

remove(int pos), sort(Comparator)

ArrayList, LinkedList is-a List; can use the super class in declaration (polymorphism)

List<String> nameList = new ArrayList<>();

ListIterator methods give detailed control over iteration of List

3. Sets
sets are ​unordered​ collections with ​no duplicates

Java says:

A Set is a Collection that cannot contain duplicate elements. It models the mathematical
set abstraction. The Set interface contains only methods inherited from Collection and
adds the restriction that duplicate elements are prohibited.

- docs.oracle.com/javase/tutorial/collections/interfaces/set.html

Different implementations of Set:

● HashSet - ​is-a Set, implements Set with a hash table, uses ​hashcode()​ method,
inherited from Object

● LinkedHashSet -​ it’s HashSet with a linked list added to preserve order (meh)
● TreeSet​ - implements Set with a binary tree

SortedSet - ​not an implementation, an interface for sorting elements in a Set, example:
TreeSet is-a SortedSet.

4

https://docs.oracle.com/javase/tutorial/collections/interfaces/set.html

4. Maps
maps store ​(key, value) pairs​; each key has one value; key -> value access is fast
Java says:

A Map is an object that maps keys to values. A map cannot contain duplicate keys: Each
key can map to at most one value.
The Java platform contains three general-purpose Map implementations: HashMap,
TreeMap, and LinkedHashMap. Their behavior and performance are precisely
analogous to HashSet, TreeSet, and LinkedHashSet, as described in The Set Interface
section.

- docs.oracle.com/javase/tutorial/collections/interfaces/map.html

Catch that? Implementations are similar to Set.
They’re ​HashMap​, ​TreeMap​, and ​LinkedHashMap​. ​SortedMap​ interface, too.

Some new methods in Map (types are K=key, V=value):

V get(K) - get value for this key

put(K, V) - put (key, value) in map

V remove(K) - remove (key, value) from map

Set<K> keySet() - create set of all keys in map

Collection<V> values() - create collection of all values in map

And… containsKey(K), containsValue(V), clear(), isEmpty()

5. Collections methods
These are some ​very useful​ static methods for Collection objects!
docs.oracle.com/javase/10/docs/api/index.html?java/util/Collections.html

Most popular methods are:

● binarySearch() - with Comparable or Comparator
● sort() - with Comparable or Comparator
● max(), min() - with Comparable or Comparator

● copy()
● reverse() - reverse the order of elements
● shuffle() - randomize!

5

https://docs.oracle.com/javase/tutorial/collections/interfaces/map.html
https://docs.oracle.com/javase/10/docs/api/index.html?java/util/Collections.html

Comparable vs. Comparator
This is important - 2 ways to compare objects (for sorting, searching, everything!):
➢ compareTo() ​method, inherited from ​Comparable​ interface
➢ Comparator​ interface

This is a nice example to walk through… Player class, 1) order by rank using
Comparable, and 2) order by name, rank, or age using Comparator.

www.baeldung.com/java-comparator-comparable

Source: ​www.javatpoint.com/difference-between-comparable-and-comparator

Grudge match: Comparable vs. Comparator!

❏ The advantage of Comparable: easy to create and called implicitly.

❏ The advantage of Comparator: more flexible, more control, can have many ways
to compare objects of a class (name, age, rank, serial number, etc)

6

http://www.baeldung.com/java-comparator-comparable
https://www.javatpoint.com/difference-between-comparable-and-comparator

6. Code snippets
ArrayList​ - probably the most popular JCF class;

ArrayList<Dog> thePound = new ArrayList<>(); // create

Dog fido = new Dog(“Fido”, “Schipperke”); // add

thePound.add(fido);

Dog dog7 = thePound.get(7); // get 7th dog

for(Dog d : thePound) { // for each dog in the pound

findOwner(d);

}

System.out.println(the_pound); // print, Dog must have toString()

thePound.sort(cmp); // must create Comparator cmp

TreeSet​ - built using a binary search tree (BST); objects must be Comparable

Set<String> fruity = new TreeSet<>(); // create

fruity.add(“apple”); // add

fruity.add(“banana”);

fruity.add(“grapes”);

fruity.add(“apple”); // add will fail! no dups allowed

fruity.contains(“orange”); // false

fruity.remove(“grapes”); // remove from set

HashMap​ - the keys in your HashMap should have hashCode() defined (String does)

Map<String, Car> usedCars = new HashMap<>(); // create

usedCars.put(“Mustang”, car1); // put = add

usedCars.put(“Subaru”, orangeCar);

usedCars.get(“Subaru”); // returns the orangeCar object

usedCars.containsKey(“Corvette”); // false

/* remember - use google to find more examples if you need them! */

7

