
C Programming and Program #1 Helper 
Prof Bill - Jan 2017 
This is a Helper document for the C Programming Language and CSC 210 Program #1 
Video List: wtkrieger.faculty.noctrl.edu/csc210-winter2017/Program1.pdf  
The sections are: 

A. Introduction 
B. The Command Line 
C. C Coding 
D. My Program #1 Stuff 

 
thanks...yow, bill 

A. Introduction 
The C programming language is 45 years old (gasp), and it’s the language I used in my 
first real nerd job out of school (gasp gasp). It’s still important today. 
 
The book: 

The C Programming Language, ANSI C 
by Brian Kernighan and Dennis Ritchie 
www.ime.usp.br/~pf/Kernighan-Ritchie/C-Programming-Ebook.pdf  

 
Update: I found a nicer PDF for the Kernighan and Ritchie C Programming Language 
book. You can search and jump in this one. Nice! 

The C programming Language (PDF) 
 
A little history: “The origin of C is closely tied to the development of the Unix operating 
system” and “Also in 1972, a large part of Unix was rewritten in C.[13] By 1973, with the 
addition of struct types, the C language had become powerful enough that most of the 
Unix's kernel was now in C.” 
 
You get a nice overview from Wikipedia: 

https://en.wikipedia.org/wiki/C_(programming_language) 

1 

http://wtkrieger.faculty.noctrl.edu/csc210-winter2017/Program1.pdf
https://www.ime.usp.br/~pf/Kernighan-Ritchie/C-Programming-Ebook.pdf
http://alvand.basu.ac.ir/~dezfoulian/files/Programming/Prentice%20Hall%20-%20The%20C%20Programming%20Language-%20Brian%20W.%20Kernighan,%20Dennis%20M.%20Ritchie,%202nd%20ed.,%20ISBN%20.pdf
https://en.wikipedia.org/wiki/C_(programming_language)


 
 
C is a lower-level programming language than Java. It doesn’t have objects or classes 
or exceptions or interfaces or abstract thingies. A C program is a collection of functions. 
There’s no garbage collection; you allocate and free memory yourself. C has pointers. 
We’ll learn a lot about pointers in our programming assignment. 
 
Fwiw, here’s a big comparison table: introcs.cs.princeton.edu/java/faq/c2java.html  
thanks… yow, bill 
  

2 

http://introcs.cs.princeton.edu/java/faq/c2java.html


B. The Command Line 
IDE’s like Eclipse and NetBeans are great. Hey, so are windows and the mouse and 
GUI’s and… But typing commands at a command line or shell is still an important skill 
for a programmer. Here are two ways to get started. 

● On Windows, run cmd 
● On Mac, run the Terminal application in Utilities 

 
From the command line, file system from the command line: 

● cd <folder> - change directory 
● ls - list files 

 
You can use Notepad++ to edit your C programs. 
 
Compile C programs with the Gnu C compiler: gcc.gnu.org/  

● The gcc compiler is available on our school computers. So is the debugger, gdb. 
● If you have a Mac at home (like I do), gcc is included in Mac’s Xcode library. I 

couldn’t find gdd on my Mac, but (google google) a program called lldb was 
available and worked fine: lldb.llvm.org. 

 
Here are some common gcc commands/options: 

# compile hello.c, creating executable output a.out  
gcc hello.c 
 
# compile hello.c, creating executable output hello  
gcc hello.c -o hello  
 
# compile hello.c, with extra files for debugging  
gcc hello.c -g -o hello  
gdb hello 
 
#compile hello.c to create hello.o, but no executable  
gcc -c hello.c  

 
Here’s a nice, short summary of gdb debugging commands: 

www.tutorialspoint.com/gnu_debugger/gdb_commands.htm  
 
The gdb commands I use most are: 

➔ l - list code, so you can see where to set breakpoints 

3 

https://gcc.gnu.org/
http://lldb.llvm.org/
https://www.tutorialspoint.com/gnu_debugger/gdb_commands.htm


➔ l <line-num> - list code at line number 
➔ b <line-num> - set breakpoint at line-num 
➔ run - run program to the next breakpoint 
➔ n - next, execute one line 
➔ s - step, execute one line of code, but step into function calls 
➔ p <variable> - print value of a variable 
➔ help 
➔ q - quit 

 
/* When I installed gcc on my MacBook, gdb was not there. (google google) So, on my 
Mac, I use lldb instead. The interface is nearly identical. 
  
 
  

4 



C. C Coding 
There are a million online tutorials and other resources. I’ll leave you to your googling. 
Of the stuff I’ve looked at, I think I liked this one best. We’ll use this in class some.  

www.learn-c.org 
 
Here are two different, easy summaries of functions in the C standard library:  

www.tutorialspoint.com/c_standard_library/index.htm  
en.wikipedia.org/wiki/C_standard_library  

 
The most important of these are: 

➢ stdio.h - always include this 
➢ stdlib.h - you can always include this one too; includes malloc() and free() 
➢ string.h - string functions 

Naming conventions 
The main thing here: be consistent. I chose this style from this SO post. 
 

The most important thing here is consistency. That said, I follow the GTK+ coding 
convention, which can be summarized as follows: 
 

1. All macros and constants in caps: MAX_BUFFER_SIZE, 
TRACKING_ID_PREFIX. 

2. Struct names and typedef's in camelcase: GtkWidget, TrackingOrder. 
3. Functions that operate on structs: classic C style: gtk_widget_show(), 

tracking_order_process(). 
4. Pointers: nothing fancy here: GtkWidget *foo, TrackingOrder *bar. 
5. Global variables: just don't use global variables. They are evil. 
6. Functions that are there, but shouldn't be called directly, or have obscure uses, 

or whatever: one or more underscores at the beginning: 
_refrobnicate_data_tables(), _destroy_cache(). 

 
For example, in Program #1 I have a VideoList struct. I have functions like 
read_video_file(). And a constant like VIDEOS_FILE_NAME. 
 
  

5 

http://www.learn-c.org/
https://www.tutorialspoint.com/c_standard_library/index.htm
https://en.wikipedia.org/wiki/C_standard_library
http://stackoverflow.com/questions/1722112/what-are-the-most-common-naming-conventions-in-c


Pretend Objects 
C isn’t object-oriented. At all. But we can pretend… well, sort of. 
 
Let’s pretend to create an object (a “class” in Java) called Professor. A professor is a 
struct. We’ll define the professor-related struct, a typedef name, and function definitions 
in one header file: professor.h. 
 

#ifndef PROFESSOR_H  
#define PROFESSOR_H  
 
/* Part 1. Define the professor struct */  
struct Professor {  

char * name; 
int dept_code;  
struct College *employer;  

}; 
typedef struct Professor *Professor; /* Part 2. a nicer name */  
 
/* Part 3. extern the prof-related functions */  
extern Professor *new_professor( char *nm, int code, struct  
college *emp);  
extern void grade_programs( Professor *p, ProgramList  
*programs) 
extern int get_tenure( Professor *p)  
 
#endif 

 
The #ifndef, #define and #endif statements are there to guard the header file. They 
prevent the header file from being compiled more than once. 
 
Part 1. The professor struct and its fields are defined here. 
 
Part 2. A typedef makes it a little nicer to reference a professor as “Professor”, rather 
than “struct professor”.  
 
Part 3. The extern allows functions in other files to call your Professor functions. 
 
Notice the big difference here between C and Java. This object setup is all optional in C. 
In Java, it’s all part of the language. 

6 



 

Some K&R notes 
Here are some supplemental notes for the K&R C book: 

The C programming Language (PDF) 
 
Ch 1 Tutorial Intro 

● C printf is like printf in Java 
● Use #define for constants; #define MAX_LINE 100 
● All function arguments are pass-by-value. You can use the “address of” operator 

(&) to pass the address of a variable into a function. This is also called a “pointer 
to” the variable. See swap() function example in Chapter 5! 

● In C, char array (char []) or char pointer (char *) is used to represent a string. You 
must allocate space for the string characters if using char *. Unlike JAva, these C 
strings are mutable. 

Ch 2 Types, Operator, Expressions 
● Only 4 basic built-in types in C: char, int, float, double 

Ch 3 Control Flow 
Ch 4 Functions 
Ch 5 Pointers and Arrays 

● See swap() function for an excellent example of pointers and the address of 
operator (&). Use & to effectively pass-by-reference. 

● Pointers and arrays are very similar. char * is like char []. 
● In C, you can define a pointer to a function. Cool. We won’t need this though. 

Ch 6 Structures 
● A struct defines related fields, like a class in Java. No methods though! 

struct Person { 
   char *name; 
   int dept_code; 
   double hourly_salary; 
}; 

● Access a field for struct with dot (.): p.name. Access field for a struct pointer 
using two-char arrow (->): p2->name. We usually deal with pointers to structs! 

● structs can be self-referential, as in list nodes. 
● typedef struct XXX XXX… to rename the struct and make code a little cleaner. 

Ch 7 Input Output 
● #include <stdio.h>... I always do this too: #include <stdlib.h> 
● you can redirect stdin with < in command line. Redirect stdout with >. 

7 

http://alvand.basu.ac.ir/~dezfoulian/files/Programming/Prentice%20Hall%20-%20The%20C%20Programming%20Language-%20Brian%20W.%20Kernighan,%20Dennis%20M.%20Ritchie,%202nd%20ed.,%20ISBN%20.pdf


○ program1 < test1.txt      # test.txt is now stdin 
○ program1 < test1.txt  > test1_out.txt 

● File access. Google fopen(). 
○ FILE *fp; 
○ fp = fopen( “test.txt”, “r”); 

● In Unix, programs return integers. exit(0) on success. exit(1), or any non-zero 
value on error. 

● Use malloc or calloc for memory allocation. See examples. On diff: calloc zeroes 
out memory that has been allocated. Use free() to free up space. 

○ int array1[ 100];   // static array 
○ int *array2;   // dynamic array 
○ ip = (int *) calloc( 100, sizeof( int)); 

 
Ch 8 Unix 
 
  

8 



D. My Program #1 stuff 
I’ll just rattle off some stuff here from my implementation. Some will apply to you. Some 
won’t. Also, I’m still figuring out Piazza, so we’ll see how that fits in as well. Ideally, we 
can post code snippets in Piazza to share. We’ll see. 
 
C functions and other stuff I used in my solution: 

➢ I used enum for my commands. This was just showing off. 
➢ File stuff I used to read and save my videos.txt file: FILE type, fopen(), fclose(), 

fgets(), fputs() 
➢ fgets() preserves the newline in the input string. I got rid of this with: 

○ line[ strlen( line) - 1] = '\0'; 
➢ Speaking of, string functions I used: strlen(); strncmp() - to compare the first N 

chars of a string 
➢ I used scanf() to read an integer for my select number: 

○ int value = -1; 
○ scanf( "%d", &value); 

➢ getline() worked at home, but not here at school. I replaced it with fgets(). 
➢ Declaring a variable in a for loop [ for( int i = 0;… ] worked at home and not at 

school. I just pulled the declaration out of the loop. 
➢ I usually include <stdio.h> and <stdlib.h> in every C file. Then, I’ll add extra 

system headers as I need them. 
➢ I used rand() and srand() for adding to a random position in the list. If you want 

to seed with the current time: 
○ #include <time.h> 
○ ... 
○ srand((unsigned) time(&t)); 

➢ Use malloc() to allocate memory (for a struct like Node or VideoList). 
➢ Don’t forget to free() when you remove a video! 
➢ I copied the video name when storing it in the Node. Weird things can happen if a 

string gets reused. 
○ char *s = (char *) malloc( strlen(data) * sizeof(char)); 
○ strcpy( s, data); 

 
 
Go! 

● I like two character commands. I’m only looking at the first 2 chars of commands 
as they come in. pr for print. ad for add. And so on. 

9 



○ Darn it. I implemented reverse, and it conflicts with remove. Switch 
command to delete? 

● I added a help command which lists all my commands. 
● I added a verbose command that turns on/off printing the Video List every time. 
● My Node struct is defined in my video_list.c file because it’s “private”. 
● Use gdb to debug your list code. If you have a Node *n, then print n shows you 

the value of n, which is a point. Now, try print *n. This shows you all the fields of 
n. Very handy! 

●  
 
 
thanks... yow, bill 
 
 

10 


