
chapters - second half 
Prof Bill - created: Dec 2016 
 
These are my 1-page summaries of chapters in our textbook: 

 
Data Structures and Algorithms  

by Goodrich, et al 
wiley.com/college/goodrich  

 
First half, bump up maps and hash tables. 
Midterm stuff: 

➔ Ch 1, Ch 2 Java + OOP 
➔ Ch 3, Ch 7 linked list + ArrayList + List ADT 
➔ Ch 5 recursion 
➔ Ch 6 stack and queue 
➔ Ch 10 maps + hash tables 

 
Here’s the second half material that is covered in this file. 
Second half: 

➔ Ch 4 algorithm analysis 
➔ Ch 8 trees 
➔ Ch 9 priority queue + heaps 
➔ Ch 14 graphs 
➔ Ch 11 search tree 

 
Ran out of time and didn’t quite make it: 

❖ Ch 12 search and sort 
 
Optional 

➔ Ch 13 text processing 
➔ Ch 15 memory management 

 
Missing: 

● There’s no GUI; use javafx, which is Ch 15 in Godfrey’s book 
● Streams API 
● lambda exprs 

  

1 

http://wiley.com/college/goodrich


Ch 4 Algorithm Analysis 
/* Big-Oh! */ 
 
We are: “CSC*210*1 (40879) Data Structures & Algorithms”  

data structure - a way of organizing and accessing data 
algorithm - a step-by-step procedure for performing some task 

 

 
Source: meherchilakalapudi.wordpress.com/category/data-structures-1asymptotic-analysis/  

 

4.1 Experimental studies 

Browser example: many many more websites, but no extra browser delay hash table! 
Java - use System.currentTimeMillis() method to time algorithm. 
 
Timing algorithms is unreliable and incomplete: 1) unreliable because of CPU load, 2) 
results limited to specific data trials, 3) you have to code the whole thing up to run it 

➔ Answer: we need a theoretical way to measure algorithm performance! 
/* String v. StringBuilder experiment - why the performance difference? */ 
 

2 

https://meherchilakalapudi.wordpress.com/category/data-structures-1asymptotic-analysis/


Analysis goals to estimate algorithm performance (fix experimental woes listed above):  
1. independent of environment,  
2. independent of specific data sets/inputs, and 
3. with no coding needed 

 
Usually focus on “worst case” performance in terms of input size = N; or “average case” 
but this is sometimes tough to analyze and specify 

4.2 Seven functions 

7 common analysis functions: constant, log, linear, n log n, quadratic, cubic, exponential 
/* these are in order of how fast they grow */ 

 
Source: i.stack.imgur.com/WcBRI.png  

4.3 Asymptotic analysis 

Asymptotic means “as N grows to infinity” 
Big-Oh! “f(n) is Big-Oh of g(n)” means: 

f(n) <= c * g(n), for c > 0, n >= n0  
 
Simplify Big-Oh to its most significant term: ignore constants, drop lower order terms 
Big-Omega - grows at least as fast as g(n), an asymptotic lower bound, whereas 
Big-Oh is an asymptotic upper bound (link, link) 
Big-Theta - identifies two functions that grow at same basic rate 
Big-Oh is, by far, the most important one, and what we’ll focus on in class. 
 

3 

https://i.stack.imgur.com/WcBRI.png
https://www.khanacademy.org/computing/computer-science/algorithms/asymptotic-notation/a/big-big-omega-notation
http://www.programmerinterview.com/index.php/data-structures/big-o-versus-big-omega-notations/


Example 4.7, page 165 - 5n^4 + 3n^3 + 2n^2 + 4n + 1 is O(n^4) 
Justify: 5n^4 + 3n^3 + 2n^2 + 4n + 1 <= (5+ 3 + 2 + 4 + 1) n^4 = cn^4. 
Summary: Big-Oh is simplified down to the highest order polynomial. 
Summary: Big-Oh eliminates all smaller-order factors: n^2 + log n is O(n^2). 
 
Important question: Does my algorithm run in polynomial or exponential time? 
This table shows why this is so critical. 

 
Source: www.cpp.edu/~ftang/courses/CS240/lectures/img/alg-tab.jpg  

 
Goodrich doesn’t cover P versus NP issue: 

● en.wikipedia.org/wiki/P_versus_NP_problem  
● danielmiessler.com/study/pvsnp/#gs.VkVM7LM  
● www.ida.liu.se/opendsa/OpenDSA/Books/Everything/html/NPComplete.html  

 

4.4 Simple Justification Techniques 

Justification is more hand-waving than a rigorous mathematical proof. 
 
My own hand-waving: Often, we are estimating search times. Array, no search = O(1); 
Linked list, touch each node = O(N); Binary search = halve the nodes we touch each 
iteration = O(log n); Bubble sorting, loop inside a loop = O(n^2) 
 
We said that hash table is special because it runs in O(1). Remember though that is 
average case. Worst case is still O(N). 

4 

https://www.cpp.edu/~ftang/courses/CS240/lectures/img/alg-tab.jpg
https://en.wikipedia.org/wiki/P_versus_NP_problem
https://danielmiessler.com/study/pvsnp/#gs.VkVM7LM
http://www.ida.liu.se/opendsa/OpenDSA/Books/Everything/html/NPComplete.html


 
Code frags 4.5, 4.6 - 3 disjoint set example; one solution is O(n^3), another O(n^2) 
 

 
Source: images.slideplayer.com/16/5041115/slides/slide_6.jpg 

 
 
 
  

5 

http://images.slideplayer.com/16/5041115/slides/slide_6.jpg


Ch 8 Trees 
/* the basics! */ 

8.1 General Trees 

Definitions: 
❏ tree - an ADT that stores elements hierarchically 
❏ root - the top/first node in the tree 
❏ parent - the node above this node in the tree; everyone but the root has a parent 
❏ child - each node has 0 or more child nodes below it 
❏ leaf - a node with no children; node sits at the bottom of the tree 

 
More (less important) definitions: 

❖ siblings - two or more nodes that share the same parent 
❖ internal node - has one or more children 
❖ external node - has no children, aka a leaf 
❖ ancestor - “node u is an ancestor of node v if u = v or u is an ancestor of v’s 

parent” (recursive definition!), or node is connected above this node 
❖ descendant - if u is an ancestor v, then v is a descendant of u, node is 

connected below this node 
❖ subtree - a subtree at node v include v as root and all v’s descendants 
❖ ordered - tree is ordered if there is an order to the children of nodes 

 
Tree ADT 

● Each node in the tree is a “position”; for any position: getElement(); /* Position 
interface defined on p 274, Code Frag 7.7, just that one method */ 

● For the tree overall: root(), parent(p), children(p), numchildren(p) 
● Util methods: size(), isEmpty(), iterator(), positions() 
● Position util methods: isInternal(p), isExternal(p), isRoot(p) 

 
In Java: 

public interface Tree<T> implements Iterable<T> { … }  

 
depth of a node/position = num ancestors of p, see recursive method at Code Frag 8.3 
height of a node/position = height of a leaf is 0; height of internal node is max all 
children’s heights + 1 (recursive again!) 
 

6 



8.2 Binary Trees 

Binary tree - each node has at most 2 children 
full binary tree - each node has 0 or 2 children, also “proper” 
Binary Tree ADT add these methods: left(p), right(p), sibling(p) 
 
Nice height-related properties of full binary tree, h=height: 

1. 2h+1 <= n <= 2^(h+1) - 1 
2. h+1 <= num edges <= 2^h 
3. h <= num internal nodes <= 2^h - 1 
4. log(n+1) - 1 <= h <= (n-1) / 2 

And… num external nodes = num internal nodes + 1 

8.3 Implementing Trees 

Interface (method signatures) => Abstract class (common code) => concrete class  
Linked binary tree uses nodes. Binary tree node has left and right pointers. 
Factory method pattern to create nodes, instead of ctor: 

Node<E> createNode( E e, Node<E> parent, Node<E> left, Node<E> right) { … } 

 
Array-based binary tree (cool!) At any array position i: 

● left child(i) = 2i + 1 
● right child(i) = 2i + 2 
● parent(i) = (i-1) / 2 

 
 

8.4 Tree Traversal 

Preorder = node, left right; Inorder = left, node, right; Postorder = left, right, node. 
Binary search tree = log(n) search 
Breadth-first traversal - use queue 

7 



Ch 9 Priority Queue 
/* Heaps of fun! */ 
Priority Queue (PQ) is like a queue, but not FIFO. Order is based on some other 
property of the key or value in PQ. It’s priority! Example: jobs waiting for CPU time; 
passengers waiting for airline seats, time-base events in a simulation, etc. 

9.1 PQ ADT 
ADT for PriorityQueue<K,V> is more like a Map than a Queue. 

Entry<K,V> insert(k,v) - add entry to PQ 
Entry<K,V> min() - return min entry in PQ 
Entry<K,V> removeMin() - remove the min entry in PQ and return it 
int size() - num entries in PQ 
boolean isEmpty()  

9.2 Implementing PQ 
We need a way to order entries into PQ. Like sorting. Two ways: 

➔ Comparable<T> interface - defines compareTo(T o) method; easy way to 
remember, method returns (this - o); 
docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html  

➔ Comparator<T> class - an algorithm in a box; similar method but with 2 params, 
compare(T o1, To2), easy to remember, returns (o1 - o2); 
docs.oracle.com/javase/8/docs/api/java/util/Comparator.html  

 
There are two Collections.sort() methods in JCF… one for Comparable, and one for 
Comparator: docs.oracle.com/javase/8/docs/api/java/util/Collections.html  
 
We know this paradigm now… interface, abstract class, class. 

➔ Unsorted list performance: O(1) insert, O(n) min 
➔ Sorted list performance: O(n) insert, O(1) min /* always first in list */ 

9.3 Heaps 
This is the $$$. 
Heap order property - every node is greater than its parent, except the root (of course) 

● en.wikipedia.org/wiki/Binary_heap - nice Wikipedia summary 

8 

https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html
https://docs.oracle.com/javase/8/docs/api/java/util/Comparator.html
https://docs.oracle.com/javase/8/docs/api/java/util/Collections.html
https://en.wikipedia.org/wiki/Binary_heap


● www.cs.usfca.edu/~galles/JavascriptVisual/Heap.html - nice simulation, helpful to 
visualize this structure to understand it 

 
insert( k, v) pseudo-code - add to end, bubble up 

E = new entry for (k,v) 
add E to end of heap 
while (not root && E.parent < E) 
    swap E and it’s parent 

 
removeMin() pseudo-code - remove root, move last entry to root, sink down 

remove root 
move last entry E to root 
while( E > it’s children) 
    swap E with smallest child 

 
Array representation is key/ubiquitous. Performance analysis: insert is O(log n); 
removeMin is O(log n). Rationale - heap height is <= log( n), where n = # entries in heap 
/* Note - we won’t cover “9.3.4 Bottom-up Heap Construction” */ 
Java Collections Framework - java.util.PriorityQueue 

● API: add (insert); peek (min); remove (removeMin); size; isEmpty 

9.4 Sorting with PQ 
EZ. Successive calls to removeMin() sorts the list. 

S = new empty List 
for i = 1 to PQ.size 
   E = PQ.removeMin() 
   S.addEnd( E) 

 
Heap Sort - performance is O(n log n). N entries inserted at O(log n) each. 
Use array. Max heap. Do remove() “in place”. Example at Figure 9.8, page 389. 
Nice summary at Wikipedia: https://en.wikipedia.org/wiki/Heapsort  

9.5 Adaptable PQ 
Add three methods to PQ ADT: 

● remove(e) - not just min 
● replaceKey(e, k) - change key of entry already in the heap 
● replaceValue( e, v) - change value of entry already in the heap 

 

9 

https://www.cs.usfca.edu/~galles/JavascriptVisual/Heap.html
https://en.wikipedia.org/wiki/Heapsort


Ch 11 Search Trees 
11.1 Binary Search Trees 
Featuring Guest Lecturer:  Brandon P! 
 
Binary search tree property… for every node: 

1. Left child is < node 
2. Right child > node 

 
ADT for BinarySearchTree<K, V> - put( k); v get( k); remove( k) 
Inorder traversal of BST results in sorted list. 
 
Pseudo-code for (recursive) search: 

TreeSearch( Node n, Key k) 
    if k == key(n), then return n 
    else if k < key(n), then return TreeSearch( left(n), k) 
    else return TreeSearch( right(n), k) 

 
Pseudo-code for insert:  

TreeInsert( Node n, Key k) 
    if n == null, then new node is root, return // empty 
BST 
    if k == key(n), then return   // key already in BST 
    else if k < key(n)   // less than means go left 
        if left(n) == null, then add new node as left child 
        else TreeInsert( left(n), k) 
    else    // must be greater than, go right 
        if( right(n) == null, then add node as left child 
        else TreeInsert( right(n), k) 

 
Performance of search and insert: O( h), where h is height of the tree. 
Performance is not O( log n) like a heap... because tree is not full, so longest path in 
BST can be much longer than log n. 
This lagging performance is the rationale for the rest of Chapter 11… balanced trees. 
/* We’ll worry about deletion later! */ 
 
Nice animation: www.cs.usfca.edu/~galles/visualization/BST.html  

10 

https://www.cs.usfca.edu/~galles/visualization/BST.html


11.5 (2,4) Trees 
Featuring Guest Lecturer:  Brett K! 
 
Also called 2,3,4 Trees: en.wikipedia.org/wiki/2%E2%80%933%E2%80%934_tree  
General (n,m) Trees are covered in section 15.3 of our book. 
These are also called B-Trees: https://en.wikipedia.org/wiki/B-tree  
 
Goal: O( log n) search by guaranteeing height of your tree is <= log( num nodes) 
Three types of nodes: 

 
Values within each node are in sorted order.  
Children follow the BST property: left < node, right >node 
So for the nodes above: 

● 2-node: p < a,  q > a 
● 3-node: p < a,  a < q < b,  r > b 
● 4-node: p < a,  a < q < b,  b < r < c,  s > c 

 
Insert 
Always insert at leaf. If 4 values in node, then split node into 2 nodes and bubble up 
inner value. Repeat above if 4 values in node. 
 
Search 

Search( Tree, key) 
    For node v, compare the key with the keys k1,k2,k3 stored at v. 
    If k is found then FOUND. 
    Otherwise return to step 1 using the child vi such that ki-1 <= ki. 
    If ki child is null then NOT FOUND 

 

/* We’ll worry about deletion later! */ 
Animation... set max degree = 4: www.cs.usfca.edu/~galles/visualization/BTree.html 
 

11 

https://en.wikipedia.org/wiki/2%E2%80%933%E2%80%934_tree
https://en.wikipedia.org/wiki/B-tree
https://www.cs.usfca.edu/~galles/visualization/BTree.html


11.2 Balanced Trees 
Binary Search Tree (BST) can get out of balance. This is why BST is not O(log n). 
 
Solution: When tree starts to get out of whack, rebalance by rotating tree nodes. 
(2,4) Tree is (sort of) an example of this, but it’s not a binary tree. 
Chapter 11 has 3 examples of binary trees that use rotation to stay balanced. 
 
Section 11.3 AVL Trees 
Use rotations to maintain Height-Balance Property: 

For every internal position p of T, the heights of children of p differ at most by 1 
 
Animation: www.cs.usfca.edu/~galles/visualization/AVLtree.html  
 
Section 11.4 Splay Trees 
Splay tree definition 

A splay tree is a self-adjusting binary search tree with the additional property that 
recently accessed elements are quick to access again.  

- en.wikipedia.org/wiki/Splay_tree  
 
So, recently accessed nodes are closer to the top and found quicker the next time. 
splay - given a node x of tree T, we splay x by moving it to the root of T. 
 
Animation: www.cs.usfca.edu/~galles/visualization/SplayTree.html  
 
Section 11.6 Red-Black Trees 
Binary tree where nodes in the tree are colored red or black. 
Rotation follows these properties: 

➔ Root property - The root is black. 
➔ External property - Every external node is black. 
➔ Red property - The children of a red node are black. 
➔ Depth property - All external nodes have the same black depth, defined as the 

number of proper ancestors that are black. 
 
Animation: www.cs.usfca.edu/~galles/visualization/RedBlack.html  
 
 
  

12 

https://www.cs.usfca.edu/~galles/visualization/AVLtree.html
https://en.wikipedia.org/wiki/Splay_tree
https://www.cs.usfca.edu/~galles/visualization/SplayTree.html
https://www.cs.usfca.edu/~galles/visualization/RedBlack.html


Ch 14 Graphs 
/* Vertices + Edges = Excellent! */ 
 
Graph G =  

1. V, set of vertices, and 
2. E, collection of edges, that connect pairs of verts 

 
2 flavors of graphs: directed (digraph) and undirected (edges) 
Examples: computer circuits (directed), 6 degrees of Kevin Bacon or Erdos number 
(undirected), airline flight info (directed), servers on the internet (undirected) 
 
Definitions galore…  
two vertices are adjacent if they are connected by an edge 
an edge is incident to a vertex if the vertex is one of its endpoints 
the degree of a vertex is its number of incident edges 
 
path - a sequence of vertex-edge that starts at one vertex and ends at another 
cycle - path that starts and ends at the same vertex 
simple path/cycle - each vertex appears only once 
a directed graph is acyclic iff it has no cycles, then it’s a “dag” 
reachable - u reaches v if there is a path between the two vertices 
a graph is connected if there is a path between any two vertices 
subgraph of G is a graph whose vertices and edges are a subset of G 
spanning subgraph is a subgraph that includes all vertices 
a forest is a graph without cycles 
a tree is a connected forest, a connected graph w/out cycles 
spanning tree is a spanning subgraph without cycles 
 
Graph ADT… generic and for un- and directed graphs (section 14.1.1, page 618) 

● Info: numVertices(); vertices(); numEdges(); edges() 
● Creation: insertVertex( x); insertEdge( u, v, x) 
● Removal: removeVertex( v); removeEdge( e) 
● Connectivity: getEdge( u, v); endVertices( e); opposite( v, e) 
● Vertex info: outDegree( v); inDegree( v); outgoingEdges( v); incomingEdges( v) 

 
/* We’ll have our own Graph210 interface, which is a simpler, non-generic, undirected 
graph with weighted edges */ 

13 



14.2 Data Structures 
Data structures: 

➢ Edge List: unordered list of edges 
➢ Adjacency List: add to Edge List, vertex list with unordered list of their edges 
➢ Adjacency Map: Same as list above, but use map: Edge get( Vertex v) 
➢ Adjacency Matrix: NxN matrix, where N= # vertices, stored edges in matrix 

Most common: Adj List, unless you know graph is very dense, then use Adj Matrix. 
Show each structure for this graph: 

 
 
Table 14.1, page 619… Big-Oh performance of Graph ADT for various data structures. 

 
 
  

14 



Ch 14 Graphs, cont. 

14.3 Graph traversals 
graph traversal - systematically visit all vertices and edges of a graph 
Useful for determining if graph is connected, or detecting cycles 
 
 
Depth-First Search (DFS) 
DFS pseudo-code: 

DFS( G, v) 
    mark v visited 
    for each vertex u adjacent to v 
        if u is not visited, then DFS( G, u) 

 
Very nice animation: www.cs.usfca.edu/~galles/visualization/DFS.html  
Performance: O( V + E) 
 
 
Breadth-First Search (BFS)  
BFS pseudo-code: 

BFS( G, v) 
    knownSet.add(v)  // add v to known set 
    Q.enqueue(v)   // add v to search queue 
    while Q is not empty 
        u = Q.dequeue() 
        for each vertex w adjacent to u 
            if ! knownSet.contains(w), then 
                knownSet.add(w) 
                Q.enqueue(w) 

 
Animation: www.cs.usfca.edu/~galles/visualization/BFS.html  
Performance: O( V + E) 
 
 
 

15 

https://www.cs.usfca.edu/~galles/visualization/DFS.html
https://www.cs.usfca.edu/~galles/visualization/BFS.html


14.4 Transitive Closure 
For a directed graph, is there a path from each pair of vertices? Reachable. 
Nice summary here: www.geeksforgeeks.org/transitive-closure-of-a-graph/  
Reachability matrix: 1 if reachable from vertex, 0 if not 

 
 
One (easy) solution: Depth-first search from each vertex, track reachability each time 
 
Floyd-Warshall algorithm - grow graph, adding edges to show transitive closure 

● if edges (u, v) and (v, w), then add (u, w) if not already there  
● do this #vertices times 

Tally weights during Floyd-Warshall to get shortest paths between all vertex pairs. 
en.wikipedia.org/wiki/Floyd%E2%80%93Warshall_algorithm  
 
Animation: www.cs.usfca.edu/~galles/visualization/Floyd.html  
 
 
  

16 

http://www.geeksforgeeks.org/transitive-closure-of-a-graph/
https://en.wikipedia.org/wiki/Floyd%E2%80%93Warshall_algorithm
https://www.cs.usfca.edu/~galles/visualization/Floyd.html


14.5 DAGS 
Directed Acyclic Graph = DAG 
 
Topological ordering - number edges in any path in increasing order, this numbering 
is not unique, DAG only! 
 
Pseudo-code: 

TopologicalSort( G) 
// init in-degree array 
create array, indegree[v] = 0  
for each edge (u,v) 
   increment indegree[v] 
 
// load stack with 0 in-degree vertices 
create vertex stack VStack 
for each vertex v 
   if indegree[v] == 0 then VStack.push(v) 
 
// process vertices on stack 
create vertex list VList 
while not VStack.isEmpty() { 
   v = VStack.pop() 
   VList.add( v)   // add to end of list 
   for all outgoing edges (v, w) 
      decrement indegree[w] 
      if indegree[w] == 0 then S.push( w) 
} 
// done - order of verts in VList is topological ordering 

 
 
Animation: www.cs.usfca.edu/~galles/visualization/TopoSortIndegree.html  
 
  

17 

https://www.cs.usfca.edu/~galles/visualization/TopoSortIndegree.html


14.6 Shortest Paths 
weighted graph - each edge has a weight (duh) 
shortest path - min weight sum of edges between two vertices 
distance array - d[v] = distance from start vertex to v, equals inf if no path 
 
Dikstra’s Algorithm - similar to Prim’s; grow path from start node and then tree 
 

Dijkstra( G, start) 
   init D distance array: D[v] = inf; D[start] = 0 
   init known array: known[v] = false 
   init path array: path[v] = -1 
   create PQ priority queue: add all D[v] to PQ 
 
   while not PQ.isEmpty() 
      u = PQ.removeMin()   // process min distance vertex, D[u] 
      known[u] = true 
  
      for each edge (u, v) 
         if known[v] is false 
            if D[u] + weight(u, v) < D[v] {  
               // update v with new, shorter distance 
               D[v] = D[u] + weight(u, v) 
               path[v] = u 
               change D[v] key in PQ   // prob delete and re-insert 
            } 

 
 
Animation: www.cs.usfca.edu/~galles/visualization/Dijkstra.html  
 
 
  

18 

https://www.cs.usfca.edu/~galles/visualization/Dijkstra.html


14.7 Minimum Spanning Trees 
spanning tree - a tree that contains every vertex in a connected graph (remember - tree 
means no cycles!); it’s a list of edges 
min spanning tree - the spanning tree where the sum of edge weights is smallest 
 

 
 
Prim’s Algorithm 
In English: Pick a vertex to be root of the tree. Find the min weight edge connected to 
the tree. Add that edge’s vertex. Repeat until all vertices are in the tree. 
Similar to Dijkstra’s Algorithm for finding shortest path. 
Animation: www.cs.usfca.edu/~galles/visualization/Prim.html  
 
Pseudo-code: 
 
PrimsMST( G, startv) 

create distance array, D[#vertices] = inf 
create parent array, parent[#vertices] = -1 
create known array, known[#vertices] = false 
 
D[startv] = 0   // start vertex is tree root  
add each D[i] to PriorityQueue PQ 
while PQ not empty  

u = PQ.removeMin() 
known[u] = true 
for each edge connected to u, (u, v) 

if ! known[v]  and weight of edge < D[v] 
D[v] = weight of edge 
parent[v] = u 
change D[v] key in PQ   // remove, and re-add to PQ 

for each vertex, v 

add edge ( v, parent[v]) to MST list  

19 

https://www.cs.usfca.edu/~galles/visualization/Prim.html


Kruskal’s Algorithm 
In English:  

sort the edges by weight 
for each edge 

add edge to MST if it doesn’t create a cycle 
 
Animation: www.cs.usfca.edu/~galles/visualization/Kruskal.html 
 
Pseudo-code:  
KruskalsMST( G) 

place each vertex in its own disjoint set 
sort all edges in G by weight 
for each edge (u,v) 

ds1 = find disjoint set of u 
ds2 = find disjoint set of v 
if ds1 != ds2 

add edge to MST list 
union( ds1, ds2)   // merge 2 disjoint sets into 1 

 
What’s are disjoint sets? What is find()? Union? 
Answer: Disjoint set is a collection of sets whose members don’t intersect. 
We use a nifty representation of disjoint sets (an array) to efficiently determine if adding 
edge would create a cycle. A lot of people use disjoint sets, eh... 

en.wikipedia.org/wiki/Disjoint-set_data_structure  
 
 
 

20 

https://www.cs.usfca.edu/~galles/visualization/Kruskal.html
https://en.wikipedia.org/wiki/Disjoint-set_data_structure

