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IJVM instruction set

Here’s the bogey. Figure 4-11: The IJVM instruction set

This is a 0 address, stack-based ISA. IJVM is all integer. This is a 32 bit machine.
Memory limit is 4GB, or 1 giga-words. Word = 4 bytes. Most things are 4 byte (int) quantities. 
Opcodes are 1 byte.

Implicit registers:
● Program counter (PC) - address of the instruction next to fetch
● Stack pointer (SP) - top of the stack, where local vars and method parameters reside
● Local variable frame (LV) - address of stack for local variables of current method
● Constant pool (CPP) - read-only area, all constants are an offset from this base address

Offsets are word offsets, so CPP+1 refers to the 2nd word in the constant pool, not the 2nd 
byte. PC values are bytes, so offsets there are in bytes.

Notice in Figure 4-14 - the translation from Java to IJVM assembly is complex. Each Java 
statement means multiple IJVM assembly statements.
The translation from assembly code to machine code, however, is pretty easy.
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For fun, I sorted the IJVM instructions by functionality.

Comments:
● This is a stack-based architecture. ILOAD is push. ISTORE is pop. the other stack ops 

operate as expected.
● Normal Arithmetic/Logic operations are postfix. Add example: Push a value (using 

ILOAD), push another value, and the IADD pops 2 values, adds them and then pushes 
the sum onto the stack.

● Branching offset parameter is 2 bytes. It's added to the current instruction location 
(PC). Negative numbers are allowed, and a 2's complement representation is used.

● Note that the varnum parameter is a 1 byte quantity that indicates the word offset (not 
byte) from the local variable frame. So, variables are reference by their number: 1, 2, 3...

● The index parameter of LDC_W is again a word offset from the CPP register. So, 
constants are numbered as well.

● There’s a lot of shenanigans surrounding INVOKEVIRTUAL (can you say "call"... jeez) 
and IRETURN. These instructions are just about implementing a stack pointer for method 
parameters and a local variable frame pointer for local variables to be placed on the 
same stack. 


