
Note 23 Feb 2014

IJVM instruction set

Here’s the bogey. Figure 4-11: The IJVM instruction set

This is a 0 address, stack-based ISA. IJVM is all integer. This is a 32 bit machine.
Memory limit is 4GB, or 1 giga-words. Word = 4 bytes. Most things are 4 byte (int) quantities. 
Opcodes are 1 byte.

Implicit registers:
● Program counter (PC) - address of the instruction next to fetch
● Stack pointer (SP) - top of the stack, where local vars and method parameters reside
● Local variable frame (LV) - address of stack for local variables of current method
● Constant pool (CPP) - read-only area, all constants are an offset from this base address

Offsets are word offsets, so CPP+1 refers to the 2nd word in the constant pool, not the 2nd 
byte. PC values are bytes, so offsets there are in bytes.

Notice in Figure 4-14 - the translation from Java to IJVM assembly is complex. Each Java 
statement means multiple IJVM assembly statements.
The translation from assembly code to machine code, however, is pretty easy.



Note 23 Feb 2014

For fun, I sorted the IJVM instructions by functionality.

Comments:
● This is a stack-based architecture. ILOAD is push. ISTORE is pop. the other stack ops 

operate as expected.
● Normal Arithmetic/Logic operations are postfix. Add example: Push a value (using 

ILOAD), push another value, and the IADD pops 2 values, adds them and then pushes 
the sum onto the stack.

● Branching offset parameter is 2 bytes. It's added to the current instruction location 
(PC). Negative numbers are allowed, and a 2's complement representation is used.

● Note that the varnum parameter is a 1 byte quantity that indicates the word offset (not 
byte) from the local variable frame. So, variables are reference by their number: 1, 2, 3...

● The index parameter of LDC_W is again a word offset from the CPP register. So, 
constants are numbered as well.

● There’s a lot of shenanigans surrounding INVOKEVIRTUAL (can you say "call"... jeez) 
and IRETURN. These instructions are just about implementing a stack pointer for method 
parameters and a local variable frame pointer for local variables to be placed on the 
same stack. 


