Note 23

IJVM instruction set

Here’s the bogey. Figure 4-11: The IJVM instruction set

Hex Mnemonic Meaning

0x10 | BIPUSH byte Push byte onto stack

0x59 | DUP Copy top word on stack and push onto stack
OxA7 | GOTO offset Unconditional branch

0x60 | IADD Pop two words from stack; push their sum
0x7E | IAND Pop two words from stack; push Boolean AND
0x99 | IFEQ offsef Pop word from stack and branch if it is zero
0x9B | IFLT offset Pop word from stack and branch if it is less than zero
0x9F | IF_ICMPEQ offset Pop two words from stack; branch if equal
0x84 | IINC varnum const Add a constant to a local variable

0x15 ILOAD varmum Push local variable onto stack

0xB6 | INVOKEVIRTUAL disp | Invoke a method

0x80 | IOR Pop two words from stack; push Boolean OR
0xAC | IRETURN Retum from method with integer value

0x36 | ISTORE vamum Pop word from stack and store in local variable
0Ox64 | ISUB Pop two words from stack; push their difference
0x13 | LDC_W index Push constant from constant pool onto stack
0x00 | NOP Do nothing

0x57 POP Delete word on top of stack

Ox5F | SWAP Swap the two top words on the stack

0xC4 | WIDE Prefix instruction; next instruction has a 16-bit index

This is a 0 address, stack-based ISA. I[JVM is all integer. This is a 32 bit machine.
Memory limit is 4GB, or 1 giga-words. Word = 4 bytes. Most things are 4 byte (int) quantities.

Opcodes are 1 byte.

Implicit registers:

Program counter (PC) - address of the instruction next to fetch

Feb 2014

Stack pointer (SP) - top of the stack, where local vars and method parameters reside
Local variable frame (LV) - address of stack for local variables of current method
Constant pool (CPP) - read-only area, all constants are an offset from this base address

Offsets are word offsets, so CPP+1 refers to the 2nd word in the constant pool, not the 2nd
byte. PC values are bytes, so offsets there are in bytes.

Notice in Figure 4-14 - the translation from Java to IJVM assembly is complex. Each Java
statement means multiple [JVM assembly statements.
The translation from assembly code to machine code, however, is pretty easy.

For fun, | sorted the IJVM instructions by functionality.

Instruction Description
Loads ILOAD varnum Push local var on stack
LDC W index Push const from const pool on stack
Stores ISTORE varnum Pop word from stack and store in local var
Stack ops BIPUSHE byte Push byte onto stack
DUP Copy top word on stack and push it
POP Pop top word off of stack
SWAP Swap the top words on the stack
Arithmetic IADD Pop two words from stack; push their sum
ISUB Pop two words from stach; push their difference
IINC varnum const Add const value to a local var
Logic IAND Pop two words from stack; push their Boolean AND
ICR Pop two words from stack; push their Boolean OR
Cmp/Branch GOTO offset Unconditional branch
IFEQ offset Pop word from stack, branch ifitis 0
IFLT offset Pop word from stack, branch ifitis <0
IF _ICMPEQ offset Pop two words from stack, branch if equal
Methods INVOKEVIRTUAL disp Invoke/call a method/procedure
IRETURN Return from a method
etc NOP Do nothing
WIDE Prefix instruction, next instruction have 16 bit index
Comments:

e This is a stack-based architecture. ILOAD is push. ISTORE is pop. the other stack ops
operate as expected.

e Normal Arithmetic/Logic operations are postfix. Add example: Push a value (using
ILOAD), push another value, and the TADD pops 2 values, adds them and then pushes
the sum onto the stack.

e Branching of fset parameter is 2 bytes. It's added to the current instruction location
(PC). Negative numbers are allowed, and a 2's complement representation is used.

e Note that the varnum parameter is a 1 byte quantity that indicates the word offset (not
byte) from the local variable frame. So, variables are reference by their number: 1, 2, 3...

e The index parameter of LDC_W is again a word offset from the CPP register. So,
constants are numbered as well.

e There’s a lot of shenanigans surrounding INVOKEVIRTUAL (can you say "call"... jeez)

and IRETURN. These instructions are just about implementing a stack pointer for method
parameters and a local variable frame pointer for local variables to be placed on the
same stack.

