
Note 24 Feb 2014

Mic-1 microcode notes

This handout elaborates on the 2+ pages of Mic-1 microcode listed in Figure 4-17.

● Each IJVM opcode has a micro-function associated with it. For example, the instruction
SWAP has micro-instructions swap1 through swap6.

● The ROM address of the first micro-instruction for an opcode is located at the opcode's
hex number. For example, the SWAP opcode is 0x5F, so its first micro-instructions,
swap1, will be located at address 0x5F in the ROM. That's where they got the funky
opcode numbering for IJVM assembly commands.

● Recall that each micro-instruction has a "next address" field. This is the next micro-
instruction in the table, unless a goto is specified. For example, the "next address" field
of swap1 is the address of swap2 (usually the next address in the ROM). The "next
address" field of swap6 is the address of the Main1 micro-instruction because of the
goto Main1 statement in swap6.

● Most micro-functions end with goto Main1. This signifies the end of the execution of
the current opcode and a return to the main execution loop. The Main1 micro-instruction
increments the Program Counter (PC) and fetches the next IJVM opcode.

● The JAM bits (JMPC, JAMN, JAMZ) are complicated, but two cases are the most
common. The most common is 000. This means goto the next micro-instr. Second, JAM
bits 100 mean get the next opcode in MBR.

The main interpreter loop

The micro-program starts at Main1 (it may actually start with at nop1 which just jumps right to
Main1) and has three parts (all executed in 1 cycle):

PC = PC + 1; fetch; goto (MBR)

The operations within this micro-instruction:
● increment the program counter
● fetch the next byte in the program, placing the byte in MBR
● jump to the opcode in MBR

The control and datapath details are:

B bus Read PC onto B

ALU Disable A input, making it 0; enable B; add with increment
(1 on the carry-in bit) resulting in B+1

C bus Write ALU result into the PC register

Note 24 Feb 2014

Memory Fetch 1 byte from memory at (new) location in PC register
and store it in lower 8 bits of MBR

Next instruction JMPC=1, so jump to micro-instruction at address in the
lower 8 bits of MBR

Please note that Main1 fetches the byte at PC address in memory before you really know
that you need it. In the case of a branch/jump, this byte would be disregarded. There is no
inefficiency here, however, as all this happens while the current instruction is being executed.

Encoding a micro-instruction
So, what would the micro-instruction for Main1 look like?

Field Bits Description

Next addr 0 0000 0000 Set to 0 so when OR’d with MBR, it will equal MBR

JMPC 1 MPC=MBR, using MBR as next micro-instr addr

JAMN 0 unused

JAMZ 0 unused

SLL8 0 no shift

SRA1 0 no shift

F0/F1 01 A or B. But A is 0 (see below), so the result is B

ENA 0 Use 0 for A

ENB 1 Enable B input from B bus

INVA 0 No invert

INC 1 Increment the PC

H 0

OPC 0

TOS 0

CPP 0

LV 0

SP 0

PC 1 Set PC register value. PC = ALU result

Note 24 Feb 2014

MDR 0

MAR 0

WRITE 0 No mem write

READ 0 No mem read

FETCH 1 Fetch next byte from memory; the next ASM instr

B bus 0001 Place PC value on B bus

So, our final micro-instruction for Main1 is:

Addr Jam ALU C Bus Mem B Bus

000000000 100 00 01 0101 000000100 001 0001

Paste together the 36 bits: 0000 0000 0100 0001 0101 0000 0010 0001 0001
Hex: 0 00 15 02 11

