
Note 28 Feb 2014

Some Intel assembly instructions

The following is a subset of gcc-supported Intel instructions that we are likely to use in CSC
220. There is a larger list on page 398, Figure 5-33 of our text.

If an instruction below ends with a *, then the true instruction name ends with a l, w, or b
depending on the size of its operands. Here's the rule:

● "long" - 4 byte operands, instruction ends in 'l'
● "word" - 2 byte operands, instruction ends in 'w'
● "byte" - 1 byte operands, instruction ends in 'b'

We will mostly use long int commands in class. Remember - most commands do not allow 2
memory references as parameters. Parameters must be register-register or register-memory.

1. Data movement instructions
Instructions that shuffle data around.

Instruction Description Example

mov* src, dest Move a value from memory to/from a
register

dest = src

movl $17, %eax

xchg* src, dest Exchange values

dest = src
src = dest

push* src Push a value on the stack

mem[stack] = src
decrease %esp

pushl %edx

pop* dest Pop a value from the stack

dest = mem[stack]
increase %esp

pop %ebp

Note 28 Feb 2014

2. Arithmetic instructions
Instructions for adding and such.

Instruction Description Example

add* src, dest Add
dest = dest + src

addl $4, %esp

sub* src, dest Subtract
dest = dest - src

subl $8, %esp

inc* dest Increment
dest++

dec* dest Decrement
dest--

imul* value
mul* value

Integer multiply (signed and not)
%eax = %edx:%eax * value

mull %ecx

idiv* divisor
div* divisor

Integer division (signed and not)
%eax = %edx:%eax / divisor

divl %ecs

3. Logical/Boolean instructions
These instructions perform bitwise Boolean operations.

Instruction Description Example

and* src, dest Boolean and
dest = dest AND src

or* src, dest Boolean or
dest = dest OR src

xor* src, dest Boolean exclusive-or
dest = dest XOR src

not* dest Boolean inversion
dest = NOT dest

4. Comparison and Jumps

Note 28 Feb 2014

These instructions simulate subtracting the source from the destination and set the flags in
the eflags register. They are commonly used to create if-then-else blocks and loops. Jump
addresses are usually labels in your assembly program.

Instruction Description Example

cmp* src, dest Compare two values
dest - src ==> set eflags reg

cmpl $0,%eax

jmp addr Unconditionally jump to an address jmp LOOP_TOP

jz addr Jump if eflags is "zero" jz ELSE_BLOCK

jnz addr Jump if eflags is "not zero"

je addr Jump is eflags is "equal"

jne addr Jump if eflags is "not equal"

jl addr Jump if eflags is "less than"

jle addr Jump if eflags is "less than or equal"

jg addr Jump if eflags is "greater than"

jge addr Jump if eflags is "greater than or equal"

5. Function-related instructions
Instructions related to handling function calls and returns. Remember: by convention, function
return values are placed in register %eax.

Instruction Description Example

call func Call function; pushes return address
onto stack

call _printf

ret Return from function; pops the return
address that must be on the stack

ret

leave Prepares for ret instruction, just like:
movl %ebp,%esp
popl %ebp

leave

