
Note 30 Feb 2014

Ch 5 - Instruction set architecture

5.1 Overview

Core i7 - CISC machine
From p 347 - The reference document for Intel’s Core i7 architecture “weighs in at 4,161 pages, 
reminding us once again that the Core i7 is a complex instruction set computer.”

Core i7 registers…eax, ebx, ecx, edx, ebp, esp, esi, edi

OMAP - RISC machine
32 bit machine, ARM architecture, load/store architecture
16 general-purpose registers, R0-R15:

Separate bank of floating point registers: 32 32-bit single precision or 16 64-bit double precision
Quiz - How are params and local vars handled differently than the Intel arch? Related… why is 
this called a load/store architecture?

ATmega168 - microcontroller
Tiny - 8-bit machine, 16KB of program memory, 1KB data memory, 
32 general-purpose registers: R0-R31, values mirrored in memory (weird)

5.2 Data types
Why does Intel Core i7 have instructions for 8 bit, 16 bit, 32 bit, and 64 bit integers?

5.3 Instruction formats
Definitions: expanding opcode 



Note 30 Feb 2014

5.4 Addressing
Modes: immediate, direct, register, register indirect, indexed, based-indexed, stack 

5.5 Instruction types
Types: Data movement, dyadic, monadic, comparison, conditional branch, call, loop, input/
output
Page 404 - “The Core i7 design was determined by three major factors: 1. Backward 
compatibility, 2. Backward compatibility, 3. Backward compatibility.”

5.6 Flow of control
Definitions: coroutine, trap, trap handler, interrupt, interrupt vector
Follow the bouncing frame pointer!

5.7 Towers of Hanoi example
Page 419, Figure 5-45, Towers of Hanoi for Core i7 - some note:

● Follow along with the Java for this code: page 409, Figure 5-39
● Good - comments at side, uses local var and param names in comments
● Bad - need space between related chunks of code, like each function call
● See function guards at beginning (push ebp, mov ebp, esp) and end (leave, ret)
● See eax is used as a tmp register
● See printf call. See its format string at the bottom.
● See cleanup after each function call, for example after printf: ADD ESP,12

Author’s 3 strikes against Intel architecture:
1. Intel breaks its complex instructions down into RISC-size chunks, but that still takes time
2. Memory-oriented ISA slows down the clock
3. Small and irregular register set

And more railing… “A huge fraction of all the transistors on the Core i7 are devoted to 
decomposing CISC instructions...”
Bonus quiz - What software company has this backward compatibility problem?


