Program #3 - Padovan ASM

Print the Padovan sequence with an Intel assembly language program using gcc

e Due: Fri Feb 28, 2014
e Worth: 15 points

Good luck!

1. Description
Please write an Intel assembly program that prints the Padovan sequence. Read on!

& Padovan Sequence
The Padovan sequence is a sequence of integers defined by a recurrence relation. You
can read a summary here: en.wikipedia.org/wiki/Padovan_sequence.

You can visualize the Padovan sequence {1,1,1,2,2,3,4,5,7,9, 12, 16,...} as a (totally
cool) spiral of triangles.

Can you draw in the next triangle with side of length 21? Then 287 Then 377

http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FPadovan_sequence&sa=D&sntz=1&usg=AFQjCNGq5wJrxo-Kd4mwxBCJLlfpJbi3gA

The Padovan sequence is defined by the following recurrence relation:

The Padovan sequence is the sequence of integers P{n) defined by the initial values
P(1)=P(2)=P(3) =1,

and the recurrence relation
P(n)= P(n —2)+ P(n - 3).

The first few values of P{n) are

1,1,1,2,2,3,4,5,7, 9,12, 16, 21, 28, 37, 49, 65, 86, 114, 151, 200, 285, ... (sequence ADDCY31 in OEIS)

Padovan also has a definition for negative indices.

Extension to negative parameters [edi]

As with any sequence defined by a recurrence relation, Padovan numbers P{m) for m<0 can be defined by rewriting the recurrence relation as
P(m)=P(m+3) - Plm+1),
Starting with m=-1 and working backwards, we extend P{m) to negative indices:

P_s| P_1g| P_18| P_17| P_1g| P_15| P_1a| P_13| P_12 P_14|P.10| P.g| P.a| P.7 P.g| P.5| P.4| P.3| P.5| P.4| Py P4y | P2
71 7| 4 o -3 4 -3 1| 1| -2 2 | of 1| 4| 1 o of 1| of 1| 1] 1

W Your program

Please write your program in Intel assembly using gcc. We will be discussing this at some
length in class.

Some more details:

e Separate your solution into 2 Padovan functions: one for positive indices and a
separate one with negative indices.
Please implement your positive Padovan function using recursion.
Please solve your negative Padovan sequence using iteration.
You must liberally comment your code. Describe each logical block! This is
important for two reasons: 1) it allows you to keep track of what your code is doing,
and 2) it shows me that you understand the code you have written.

e You can use one or multiple files for your program. It's up to you.

X My program

Your output should look something like this. In the PC console window below, | show 2
things: First, | use the gcc command to assemble and link my program. Then, | run it for a
positive Padovan index of 20.

BN Command Prompt ||l @

F:wcesc22@wprogramn3>gece program3d.s —o programd.exe

F:“csc22@8“progran3 >programnd
C5C22A Program #3 - Padovan Sequence
hy Bill Krieger, Feh 2814

Enter max padovan index (positive or negative>: 28
H = 28

Padovan[B]
Padovan[1]
Padovan[2]
Padovan[3]
Padovan[4]
PadovanLl5]
Padovanlh]
Padovan[?]
PadovanL8]
Padovan[?]
Padovan[18] =
Padovan[i1]
Padovan[12]
Padovan[i3]
Padovan[i4]
Padovan[15]
Padovan[ib]
Padovan[17]
Padovan[18]
Padovan[19]
Padovan[28]

=] L b B0 [ek ek ek ek

F:wcesc22B@wprogram3>_

In my second run, I'll use a negative index.
=3 Command Prompt =[]

F: czc22@sprogram3 >programd
CSC228 Program #3 — Padovan Seguence
by Bill Krieger. Feh 2814

nter max padovan index (positive or negativel:
= —1@

EBUG: in negative_padovan<?. n=-18
a

F: csc22B@~program3 >

2. Grading

Please create a programa3 folder in your k: drive space. I'll look for these files:
e Your README.txt file where you describe the state of your program
e Your assembly language program. Please put main () in program3.s. You can
place your other functions in this file or create others as you like.
e Once your code is running try a number of positive and negative max index values.
Describe these tests in your README.
e | will not ding your grade if you don’t check for overflow. | didn't.

3. Notes

Here’s some mighty wind to fill the sails of your Program #3 expedition.

Your process
| strongly recommend you take the following steps en route to Program #3 nerdvana:

e Do your program in Java or C first. This should be easy.

e With that complete, print your code. Circle a tiny sliver of your program and code it
up in assembly. Test and run it. Once one sliver is done, then move on to the next. If
you get stuck on a sliver, then ask for help. Rinse and repeat.

e Start a function with my template assembly code in the k: drive.

e | used Notepad++ to edit my files. | ran gcc in the Windows console.

A cautionary note - plagiarism
I's GREAT to get help from me: via email or in person. It's OK to talk to your peers as well.
But you know you’ve crossed the line and cheated when:

e You copy-paste code from someone else

e You don’t understand all your code

e You change variables from someone else’s existing code

Start early. Ask for help if you need it.
Thanks, Bill

