Program #4 - Assemble this!

Write a Java program to assemble IJVM assembly code into object code

e Due: Fri Mar 14, 2014
e Worth: 10 points

Good luck!

1. Description

Please write a two-pass assembler for the IJVM instruction set. The input to your program
is an assembly source file (our homemade brand). The output is an object file.

Read on!

© Textbook references
Well, this is a good starting point... the [JVM instruction set.

Hex Mnemonic Meaning

0x10 | BIPUSH byte Push byte onto stack

0x59 | DUP Copy top word on stack and push onto stack
0xA7 | GOTO offset Unconditional branch

0x60 | IADD Pop two words from stack: push their sum
0x7E | IAND Pop two words from stack; push Boolean AND
0x99 | IFEQ offsef Pop word from stack and branch if it is zero
0x9B | IFLT offset Pop word from stack and branch if it is less than zero
0x9F | IF_ICMPEQ offset Pop two words from stack; branch if equal

0x84 | IINC vamum const Add a constant to a local variable

0x15 | ILOAD varmum Push local variable onto stack

0xBé | INVOKEVIRTUAL disp | Invoke a method

0x80 | IOR Pop two words from stack; push Boolean OR
0xAC | IRETURN Retum from method with integer value

0x36 | ISTORE vamum Pop word from stack and store in local variable
Ox64 | ISUB Pop two words from stack; push their difference
0x13 | LDC_W index Push constant from constant pool onto stack
0x00 | NOP Do nothing

0x57 POP Delete word on top of stack

0x5F | SWAP Swap the two top words on the stack

0xC4 | WIDE Prefix instruction; next instruction has a 16-bit index

Page 266 has a nice, tiny IJVM assembly code and object code example. And Chapter
7.3 includes Tanenbaum’s pseudo-code for a two-pass assembler. We’'ll talk about the
merits of his approach in class.

CSC 220

Program #4

4 ASM file format
The input to your assembler is an assembly source (ASM) file. Our format closely follows
the example on Page 266. We need to add/clarify a couple things:
e Let’'s make the pound sign (#) our comment character. This simplifies our scanner.
Anything after the “#” is comment and can be disregarded by your assembler.
e \We need one pseudo-instruction, .method. This pseudo-instruction will signify the
start of a method. It’s like .global in Intel assembly. So, each method will start with a

.method pseudo-instruction and a label. Like this:
.method foo
foo:

e Let’s restrict our ASM files to one method per file.

% Object file format
The output of your program is an object file. We’'ll make our object file as simple and
readable as possible. | propose three parts.

<object file> := <magic number> <symbols section> <code section>

1. Magic number

All CSC 220 object files begin with the magic number “DC” as the first line. A magic
number is a constant that identifies this as a CSC 220 object file. | chose this because DC
is 220 in hex.

<magic_number> := DC

2. Symbols section
The Symbols section defines the symbols in this method, one line at a time.

<symbols section> :=
.symbols
{<symbol defn>}
.end

There are three types of symbol definitions: labels, variables, and externals. Each appears
one line at a time. The format of each is:

<symbol defn> := <label defn> | <var defn> | <extern defn>
<label defn> := LAB <label name> <label address>
<var_defn> := VAR <variable name> <variable num>

CSC 220 2 Program #4

<extern defn> := EXT,<method name> <methond num>

In the definitions above, a number or address should be an integer.

3. Code section
The code section lists the object code for the method, one line at a time.

<code_ section> :=
.code
{<object code>}
.end

Each object code line looks like this:

<object code> := <opcode> <operands>
<opcode> := 1 byte opcode

<operands> := { <operand> }
<operand> := 1 or 2 byte operand

Our object code will be in a readable hex format. We'll print the characters for hex digits
rather than the hex values themselves, so that we can more easily read the file. I'll talk about
this in class and provide a couple methods for you to do this.

B Object-oriented design
We’'ll discuss this in class. What objects are present in this program?

W Solo vs. Team project

| invite you to work in pairs on Program #4. If you do this, | ask that only one person works
on any given class. For this reason, you’ll want to split the two-pass assembler into
separate classes.

If you do this program on your own, then you can write an empty symbols section. Just write
your assembler and output an empty symbols section, followed by a code section. This will
make my disassembler output be a little rough (no names), but that’'s OK.

¥ Etc
More Program #4 details:
e Examples - I'll have examples of ASM and object files available on the k: drive.
e File names - Let’s use .txt as a suffix for all our files, so that we can notepad them

CSC 220 3 Program #4

up. For an ASM file call X. txt, let’s call the object file X obj.txt.

e Disassembler - | will provide a disassembler. This program will do the opposite of
your assembler. Its input will be an object file, from which it will create an assembly
source file. You can use this tool to test the validity of your program’s output.

e Object-oriented design - Spaghetti code is not acceptable. Identify the objects in
your design and code them up. We’'ll discuss these objects in lecture.

When we bump into more details, we’ll discuss them in lecture.

2. Grading

Please create a program4 folder in your k: drive space. I'll look for these files:

e Your README.txt file where you describe the state of your program. Tell me what
examples run and

e Your Java code. In your README, please tell me where your code is and what IDE
you used (NetBeans, Eclipse, etc) so that | can run it.

e Your results, the object code created by your program. In your program4 folder,
please create an examples folder. Place the the object code created by your
program there.

Your code MUST be beautiful. Ugly code will receive an ugly grade. You can find “Prof Bill’s
Java Coding Guidelines” on our Program page on the website.

| figure that we’ll have issues along the way, so | have a separate page of notes, here:
Note35 - Program #4 Notes.

A cautionary note - plagiarism
It's GREAT to get help from me: via email or in person. It's OK to talk to your peers as well.
But you know you've crossed the line and cheated when:

e You copy-paste code from someone else

e You don’t understand all your code

e You change variables from someone else’s existing code

Have fun!
Thanks, Bill

CSC 220 4 Program #4

http://www.google.com/url?q=http%3A%2F%2Fwtkrieger.faculty.noctrl.edu%2Fcsc220%2Fprogram4_notes.pdf&sa=D&sntz=1&usg=AFQjCNGxMpGs4FiqoteSD8DMgGmF96IJuw

