Sign Up!

Tuesday, September 20, 2016 6:47 PM

- Setting up a sign up form with HTML and Ruby; Using REST architecture to handle calls

Showing Users
- Create a branch (like always)

- The debug method with params will allow for debugging specific pieces
<%= debug(params) if Rails.env.development? %>

From <https://www.railstutorial.org/book/sign up>

- We can access the method Rails.env.development? To only provide debugging when we are
building...
- Rails allows for environments in which you can build and test (In console run Rails.env)
o Production: What is live
o Development: What we are working on
- To make debug pretty, add CSS in listing 7.2

- If we have no users in the database, we are going to need to add one (see Section 6.3.4)
- We are going to focus on POST,GET,PATCH,DELETE of REST
- To allow for URL calls to work with key fields, add resources :users to the routes.rb file
o This will allow for all dynamic calls to the Users controller
- Adding the View
o We'll need to add a Users.Show view, since we don't have a template available.
o Update the controller to pass the necessary User over to the model and view
@user = User.find(params|:id])

From <https://www.railstutorial.org/book/sign up>
= This passes the specific USER ID called into the find method and stores it within the
@user
- Debugging Some More
o Add debugger to the show method of the UsersController
o We can now interact with a prompt as a console through the browser
o Close With Ctlr+D

- Gravatar Image
o Adding a globally recognized avatar to the site
o Requires just a hash value of the email address
o Use gravatarfor @user
o You then can implement a necessary helper function into users_helper.rb

- Sidebar
o Update the necessary users.html.erb file to drop in the new contents via typical ruby
commands
o Note: We are using built in bootstrap classes here: col-md-4
o Note: We are using an HTML5 tag, aside (Typically for secondary content, sidebars, etc)

Signhup Form

Chapter 7 Page 1

- We will need to build a form that will pass over the necessary fields into form_for and then the
Active Record
- Let's update the users_controller.rb with @User = User.new
- Digging into the HTML
o Form_for(@user) do [f]......end
o Let's loop through each variable and process
o The code f.label :name => Creates the necessary label and field for the form automagically
(And all other fields)
o Ruby is also pretty smart -> Uses HTMLS Email field for client side validation without the
need for JS (If disabled) as well as special keyboards for mobile
o Name attribute: The unique ID for the form field. Ruby will grab this and make it a part of
the user object
O Ruby sees the @user object and handles the form tag with easy magically
o Additional tags are added for validation and character encodings

Unsuccessful signups

- Where the user fails to do something right
- When we create users we call the create action via POST
- We can store the User.new into @user and see if the .save was completed.
- Processing
o Ruby pulls all the fields into params of the UserController. This is set into hash maps

- Strong Params
o |Initializing the entire params has is dangerious!
o When in need of more data, we can use administrative flags
o Within the controller we sepecify what params are required now
params.require(:user).permit(:name, :email, :password, :password_confirmation)

From <https://www.railstutorial.org/book/sign _up>
o We can add a private User_params as a method to pass the required

- Sending Error Messages
o In order to add validation messages, we'll need to update the views
o Adding a render will help display the necessary fields
<%= render 'shared/error_messages' %>

From <https://www.railstutorial.org/book/sign up>

o Along with the other fields (Below is a template)
<%= f.text_field :name, class: 'form-control' %>

From <https://www.railstutorial.org/book/sign up>

o To fully implement add a new directory and template to link up the logic and display
o To make text more pleasant, we can use pluralize method

- Testing
o We can create automated tests to check our form! (Unlike the olden days)
o Generate a test file:
rails generate integration_test users_signup

From <https://www.railstutorial.org/book/sign _up>
o Assert no difference comparison between the user count before and after the block for
assert)no_difference

Chapter 7 Page 2

Successful Signups
- We'll need to update the redirect on success
- Using redirect_to user_url(@user) will take the user to their specific profile page

- The Flash
o AFlash is a quick message displayed after an action occurs
o We can add them into the control, such as
flash[:success] = "Welcome to the Sample App!"

From <https://www.railstutorial.org/book/sign up>
o The messages can be design tweaked within the HTML ERB files
O :success is a symbol that is converted to success during template insertion
o We have others too.... Alert-danger, info, warning, danger

o After changes, don't forget to migrate!

o Testing valid submissions
= With assert_difference we can add follow_redirect! To check the redirect off to the
next page.

Deployment
- Let's git commit and push up, it's time!

- SSL
o Secure Sockets Layer, a method of secure transport on the internet
o We can add a setting to the config to enforce SSL
Force all access to the app over SSL, use Strict-Transport-Security,
and use secure cookies.
config.force_ssl = true

From <https://www.railstutorial.org/book/sign up>

- PUMA
o Toincrease performance on the web, we'll switch to Puma on Heroku.
o Need to add a new gem, puma (Default in Rails 5)
o We'll need to update the file contents within config/puma.rb; ./procfile
o Then push up the changes to git and heroku!

Chapter 7 Page 3

