
Chapter 12 Rails Tutorial Notes - Password Reset

12.1 Password Resets Resource
● Generate Password Resets controller: ​rails generate controller PasswordResets new edit --no-test-framework
● Create new entries in Routes.rb for password reset forms: new, create, edit, and update.
● Add link to the login page (in views/sessions/new.html.erb), new reset_digest to db and do a migrate.
● Create new password reset view, then in the controller create new ​create​ action. Finally, create password reset

methods in User.rb.

12.2 Password Reset Emails
● In user_mailer.rb, create a method to email the user the reset instructions. Then, we set up a template for said

instructions at password_reset.text.erb and a preview for reset_password just like for activation in CH 11.
● Use the server log to observe sending a password reset email.

12.3 Resetting the Password
● Add a hidden field to the edit page (views/password_resets/edit.html.erb) to store the user’s email.
● Put in new ​before_action​ filters in the password_resets_controller.rb to make sure user exists/is valid.
● Consider 4 use cases and implement them in our ​update​ action in the controller as well:

○ An expired password reset
○ A failed update due to an invalid password
○ A failed update (which initially looks “successful”) due to a blank password and confirmation
○ A successful update

● Create password reset methods in the user model to make sure the activation is fresh.
● Generate integration test with ​rails generate integration_test password_resets​ , then prove test status = green.

12.4 Email in Production (take two)
● As in CH 11, we use the SendGrid add-on for Heroku to handle our email services in production.
● Finish up with the usual merge > commit > push to our repo and then Heroku.

12.5 Conclusion
● Similar to sessions and activations, password resets can be

modeled as a resource.
● Action Mailer can do both plaintext and html emails
● Password resets use a generated token to create a unique

URL for resetting passwords.
● Password resets use a hashed reset digest to securely

identify valid reset requests.
[Proof Key]

Δ​ t​ r ​ = time interval since sending the password reset

Δ​ t​ e ​ = expiration time limit

t​ N​ = time now

12.6 Proof of Expiration Comparison

reset_sent_at ​ <​ ​ 2.​ hours​ .​ ago

Δ​ t​ r​ >Δ​ t​ e

Δ​ t​ r​ =​ t​ N​ −​ t​ r ​ and ​Δt​e​=t​N​−t​e

Δt​ r > ​ Δt​ e

t​ N​ −t​ r > ​ t​ N​ −t​ e

−t​ r > ​ −t​ e

t​ r​ <t​ e

