
Ch 14 notes - Following users
My tutorial notes… be brief, H3 for each section, bold terms etc, code is italics

In chapter 14… “add a social layer to allow users to follow (and unfollow) other users”

➢ The tutorial: www.railstutorial.org/
➢ Hartl’s reference version of sample_app:

bitbucket.org/railstutorial/sample_app_4th_ed
➢ My sample_app: sampleapp694.herokuapp.com/

“This final chapter contains some of the most challenging material in the tutorial,
including some Ruby/SQL trickery to make the status feed.”
Impacted screens include: 1) current user profile, 2) all users, 3) other user profile and
follow button, 4) other user profile with unfollow button and followers count, and 5)
Home page with status feed and following count.

I didn’t do the chapter, I just read through it and highlighted the important parts.
enjoy… yow, bill

14.1 The Relationship model
The many-to-many relationship between following and followed users needs a new
construct, a separate “active relationships” table.

1

https://www.railstutorial.org/
https://bitbucket.org/railstutorial/sample_app_4th_ed
https://sampleapp694.herokuapp.com/

Add relationships to user data model. Following is the active_relationship and followers
are passive_relationship. (compare to micropost 1-to-many construct):

class User < ApplicationRecord
 has_many :microposts, dependent: :destroy
 has_many :active_relationships, class_name: "Relationship",
 foreign_key: "follower_id",
 dependent: :destroy
 has_many :passive_relationships, class_name: "Relationship",
 foreign_key: "followed_id",
 dependent: :destroy
 has_many :following, through: :active_relationships, source: :followed
 has_many :followers, through: :passive_relationships, source: :follower

And here’s the relationship model:

class Relationship < ApplicationRecord
 belongs_to :follower, class_name: "User"
 belongs_to :followed, class_name: "User"

Multiple key index to create relationship…. here it’s follower and followed:

@relationship = Relationship.new(follower_id: users(:michael).id,
 followed_id: users(:archer).id)

Use has_many :through: a user has-many following through relationships.

has_many :following, through: :active_relationships, source: :followed

14.2 A web interface for following users
Some fancy new stuff in routes.rb to get follower and following URL’s:

resources :users do
 member do
 get :following, :followers
 end
 end

2

Interesting User controller code… these methods drive the follower and following pages:
def following
 @title = "Following"
 @user = User.find(params[:id])
 @users = @user.following.paginate(page: params[:page])
 render 'show_follow'
 end

 def followers
 @title = "Followers"
 @user = User.find(params[:id])
 @users = @user.followers.paginate(page: params[:page])
 render 'show_follow'
 end

Ajax: “Because adding Ajax to web forms is a common practice, Rails makes Ajax easy
to implement.” Change form_for to form_for ..., remote: true

In HTML this “sets the variable data-remote="true" inside the form tag, which tells Rails
to allow the form to be handled by JavaScript.”

More complexity here that I’ll bypass… but a good starting point if we do any Ajax.

14.3 The status feed
Important: Use the where method for an easy SQL query:

Micropost.where("user_id = ?", id)
Micropost.where("user_id IN (?) OR user_id = ?", following_ids, id)

Arbitrary SQL commands (SELECT, etc) can be included in a where method call. I do
not expect us to need this however. If you do this, please show me/others.

3

14.4 Conclusion
Hartl’s lists 10 options for further learning, including his own venture, The Learn Enough
Society.

What we learned:

➔ Rails’ has_many :through allows modeling of complicated data relationships.
➔ The has_many method takes several optional arguments, including the object

class name and the foreign key.
➔ Using has_many and has_many :through with properly chosen class names

and foreign keys, we can model both active (following) and passive (being
followed) relationships.

➔ Rails routing supports nested routes.
➔ The where method is a flexible and powerful way to create database queries.
➔ Rails supports issuing lower-level SQL queries if needed.

Don’t forget that Hartl’s reference code for sample_app is here:

➢ bitbucket.org/railstutorial/sample_app_4th_ed

Done.
thanks… yow, bill

4

https://bitbucket.org/railstutorial/sample_app_4th_ed

